Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38931005

RESUMO

Nitroxides are stable radicals consisting of a nitroxyl group, >N-O•, which carries an unpaired electron. This group is responsible for the paramagnetic and antioxidant properties of these compounds. A recent study evaluated the effects of pyrrolidine and pyrroline derivatives of nitroxides on the antioxidant system of human red blood cells (RBCs). It showed that nitroxides caused an increase in the activity of superoxide dismutase (SOD) and the level of methemoglobin (MetHb) in cells (in pyrroline derivatives) but had no effect on the activity of catalase and lactate dehydrogenase. Nitroxides also reduced the concentration of ascorbic acid (AA) in cells but did not cause any oxidation of proteins or lipids. Interestingly, nitroxides initiated an increase in thiols in the plasma membranes and hemolysate. However, the study also revealed that nitroxides may have pro-oxidant properties. The drop in the AA concentration and the increase in the MetHb level and in SOD activity may indicate the pro-oxidant properties of nitroxides in red blood cells.


Assuntos
Antioxidantes , Eritrócitos , Óxidos de Nitrogênio , Superóxido Dismutase , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Ácido Ascórbico/farmacologia , Ácido Ascórbico/química , Eritrócitos/metabolismo , Eritrócitos/efeitos dos fármacos , Metemoglobina/metabolismo , Óxidos de Nitrogênio/química , Oxirredução/efeitos dos fármacos , Pirrolidinas/química , Pirrolidinas/farmacologia , Superóxido Dismutase/metabolismo
2.
Molecules ; 29(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38893395

RESUMO

High concentrations of acrolein (2-propenal) are found in polluted air and cigarette smoke, and may also be generated endogenously. Acrolein is also associated with the induction and progression of many diseases. The high reactivity of acrolein towards the thiol and amino groups of amino acids may cause damage to cell proteins. Acrolein may be responsible for the induction of oxidative stress in cells. We hypothesized that acrolein may contribute to the protein damage in erythrocytes, leading to the disruption of the structure of cell membranes. The lipid membrane fluidity, membrane cytoskeleton, and osmotic fragility were measured for erythrocytes incubated with acrolein for 24 h. The levels of thiol, amino, and carbonyl groups were determined in cell membrane and cytosol proteins. The level of non-enzymatic antioxidant potential (NEAC) and TBARS was also measured. The obtained research results showed that the exposure of erythrocytes to acrolein causes changes in the cell membrane and cytosol proteins. Acrolein stiffens the cell membrane of erythrocytes and increases their osmotic sensitivity. Moreover, it has been shown that erythrocytes treated with acrolein significantly reduce the non-enzymatic antioxidant potential of the cytosol compared to the control.


Assuntos
Acroleína , Citosol , Membrana Eritrocítica , Eritrócitos , Acroleína/farmacologia , Acroleína/toxicidade , Acroleína/metabolismo , Citosol/metabolismo , Citosol/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Humanos , Membrana Eritrocítica/efeitos dos fármacos , Membrana Eritrocítica/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Proteínas de Membrana/metabolismo , Membrana Celular/metabolismo , Membrana Celular/efeitos dos fármacos , Fluidez de Membrana/efeitos dos fármacos , Fragilidade Osmótica/efeitos dos fármacos
3.
Microbiol Res ; 283: 127703, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38537329

RESUMO

Staphylococci are responsible for many infections in humans, starting with skin and soft tissue infections and finishing with invasive diseases such as endocarditis, sepsis and pneumonia, which lead to high mortality. Patients with sepsis often demonstrate activated clotting pathways, decreased levels of anticoagulants, decreased fibrinolysis, activated endothelial surfaces and activated platelets. This results in disseminated intravascular coagulation and formation of a microthrombus, which can lead to a multiorgan failure. This review describes various staphylococcal virulence factors that contribute to vascular thrombosis, including deep vein thrombosis in infected patients. The article presents mechanisms of action of different factors released by bacteria in various host defense lines, which in turn can lead to formation of blood clots in the vessels.


Assuntos
Coagulação Intravascular Disseminada , Sepse , Infecções Estafilocócicas , Trombose , Humanos , Fatores de Virulência/metabolismo , Staphylococcus/metabolismo , Trombose/complicações , Coagulação Intravascular Disseminada/complicações , Infecções Estafilocócicas/microbiologia
4.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38338837

RESUMO

One of the early symptoms of chronic venous disease (CVD) is varicose veins (VV) of the lower limbs. There are many etiological environmental factors influencing the development of chronic venous insufficiency (CVI), although genetic factors and family history of the disease play a key role. All these factors induce changes in the hemodynamic in the venous system of the lower limbs leading to blood stasis, hypoxia, inflammation, oxidative stress, proteolytic activity of matrix metalloproteinases (MMPs), changes in microcirculation and, consequently, the remodeling of the venous wall. The aim of this review is to present current knowledge on CVD, including the pathophysiology and mechanisms related to vein wall remodeling. Particular emphasis has been placed on describing the role of inflammation and oxidative stress and the involvement of extracellular hemoglobin as pathogenetic factors of VV. Additionally, active substances used in the treatment of VV were discussed.


Assuntos
Varizes , Insuficiência Venosa , Humanos , Varizes/etiologia , Varizes/patologia , Veias/patologia , Insuficiência Venosa/patologia , Extremidade Inferior/patologia , Doença Crônica , Inflamação/patologia
5.
Molecules ; 28(16)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37630426

RESUMO

Nitroxides are stable, low molecular-weight radicals containing a nitroxide group that has an unpaired electron. The presence of a nitroxide group determines their redox properties. The effect of the piperidine nitroxides, Tempo, Tempol, and Tempamine, on metalloproteins (hemoglobin, superoxide dismutase, catalase) and lactate dehydrogenase in red blood cells was investigated in this research. In addition, the level of lipid peroxidation and the level of protein carbonyl groups were examined as indicators of the effect of oxidative stress. Nitroxides increased superoxide dismutase activity and oxidized hemoglobin to methemoglobin, and also slightly decreased the catalase activity of red blood cells treated with nitroxides. Tempol significantly decreased lactate dehydrogenase activity. All three nitroxides had no effect on membrane lipid peroxidation and protein oxidation. Our results confirm that nitroxides have both antioxidant and prooxidative effects in human red blood cells. The piperidine nitroxides do not initiate the oxidation of proteins and lipids in the membranes of human red blood cells.


Assuntos
Metaloproteínas , Humanos , Catalase , Eritrócitos , Antioxidantes/farmacologia , L-Lactato Desidrogenase
6.
Molecules ; 27(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35744968

RESUMO

The deteriorating function of the kidneys in chronic kidney disease (CKD) is associated, among other things, with the retention of many unnecessary metabolic products in the body. Indoxyl sulfate (IS) belongs to the group of uremic toxins with a high protein binding affinity. Moreover, this compound can generate oxidative stress. We hypothesized that a high concentration of IS might induce oxidative changes in erythrocytes and plasma components, and could therefore contribute to CKD progression. In this study, we evaluated the influence of IS on the oxidative stress parameters in plasma and hemolysate. Moreover, as a result of the action of IS, we observed a decrease in the total antioxidant capacity and a change in the activity of catalase and superoxide dismutase in hemolysate and plasma. The obtained results indicate that IS induces oxidative damage to hemolysate and plasma components. Greater changes in the parameters of oxidative stress were observed in hemolysate than in plasma treated with indoxyl sulfate. The obtained results suggest that the increased concentration of IS in patients with chronic kidney disease may lead to a decrease in the lifespan of erythrocytes in their bloodstream.


Assuntos
Indicã , Insuficiência Renal Crônica , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Humanos , Indicã/metabolismo , Estresse Oxidativo , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/metabolismo , Superóxido Dismutase/metabolismo
7.
Cardiol Res Pract ; 2021: 5569961, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34306747

RESUMO

The varicose vein results from the inefficient functioning of the valves in the lower limb veins, making the blood flow slow down and leading to blood stasis and hypoxia. This type of vein dysfunction might be a result of the development of oxidative stress. We compared oxidative stress markers in the plasma and erythrocytes obtained from peripheral veins and varicose veins in the same patients (glutathione, nonenzymatic antioxidant capacity (NEAC), catalase (CAT) and acetylcholinesterase (AChE) activity, thiols, thiobarbituric acid-reactive substance (TBARS), and protein carbonyls). We found a decrease in NEAC in the plasma obtained from the varicose veins compared to the peripheral veins. We detected a decrease in thiols in the plasma, hemolysate, and plasma membranes and increase in protein carbonyl compounds and TBARS levels in the varicose veins. These changes were accompanied by a decrease in CAT and AChE activity. For the first time, our results show changes in the plasma, erythrocyte membrane, and hemolysate protein properties in varicose vein blood in contrast to the plasma and erythrocytes in peripheral vein blood from the same patients. The increased oxidative stress accompanying varicose vein disease might result from the local inefficiency of the antioxidant defense system.

8.
Oxid Med Cell Longev ; 2021: 6639199, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33708334

RESUMO

Reactive oxygen species (ROS) released in cells are signaling molecules but can also modify signaling proteins. Red blood cells perform a major role in maintaining the balance of the redox in the blood. The main cytosolic protein of RBC is hemoglobin (Hb), which accounts for 95-97%. Most other proteins are involved in protecting the blood cell from oxidative stress. Hemoglobin is a major factor in initiating oxidative stress within the erythrocyte. RBCs can also be damaged by exogenous oxidants. Hb autoxidation leads to the generation of a superoxide radical, of which the catalyzed or spontaneous dismutation produces hydrogen peroxide. Both oxidants induce hemichrome formation, heme degradation, and release of free iron which is a catalyst for free radical reactions. To maintain the redox balance, appropriate antioxidants are present in the cytosol, such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and peroxiredoxin 2 (PRDX2), as well as low molecular weight antioxidants: glutathione, ascorbic acid, lipoic acid, α-tocopherol, ß-carotene, and others. Redox imbalance leads to oxidative stress and may be associated with overproduction of ROS and/or insufficient capacity of the antioxidant system. Oxidative stress performs a key role in CKD as evidenced by the high level of markers associated with oxidative damage to proteins, lipids, and DNA in vivo. In addition to the overproduction of ROS, a reduced antioxidant capacity is observed, associated with a decrease in the activity of SOD, GPx, PRDX2, and low molecular weight antioxidants. In addition, hemodialysis is accompanied by oxidative stress in which low-biocompatibility dialysis membranes activate phagocytic cells, especially neutrophils and monocytes, leading to a respiratory burst. This review shows the production of ROS under normal conditions and CKD and its impact on disease progression. Oxidative damage to red blood cells (RBCs) in CKD and their contribution to cardiovascular disease are also discussed.


Assuntos
Eritrócitos/patologia , Espécies Reativas de Oxigênio/metabolismo , Insuficiência Renal Crônica/sangue , Animais , Doenças Cardiovasculares/patologia , Citoproteção , Humanos , Estresse Oxidativo
9.
Cardiol Res Pract ; 2020: 6478785, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33294220

RESUMO

PURPOSE: Comprehensive cardiac rehabilitation (CCR) is a complex program aimed at improving the health status of patients with coronary artery disease (CAD), especially those who have been subjected to cardiac interventions (PCI and CABG).The aim of this study was to measure the changes in the properties of red blood cells (RBCs) in men with CAD after cardiac intervention and after participation in CCR program. METHODS: In this study, we have investigated the influence of the physical training-based CCR program in 12 men with CAD, after PCI or CABG. The characteristics of RBCs including the basic morphology of RBCs, the conformational state of RBC membrane protein and hemoglobin, acetylcholinesterase activity, membrane fluidity, the osmotic fragility, and thiol concentration in membrane and in hemolysate were measured. Ascorbate concentration and reduced glutathione were also determined. The analysis was performed in men, before and after participation in CCR. The properties of RBCs were observed in connection with the exercise test, and parameters were evaluated before, immediately after, and 1 hour after the exercise test. RESULTS: After CCR, a decrease in the mobility of erythrocyte membrane proteins was observed, which was accompanied by a decrease in lipid fluidity. In addition, immediately after the exercise test and 1 hour later, we measured a decrease in thiol level in hemolysate, but not in the plasma membrane. Unexpectedly, an increase in reduced glutathione concentration one hour after the exercise test after completing comprehensive cardiac rehabilitation was observed. CONCLUSION: CCR in men with CAD after cardiac intervention is connected with decreased membrane fluidity and decreased membrane protein mobility, which indicates that reduction of oxidative changes in these components occurs.

10.
Molecules ; 25(21)2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33158261

RESUMO

The biological properties of doxyl stearate nitroxides (DSs): 5-DS, Met-12-DS, and 16-DS, commonly used as spin probes, have not been explored in much detail so far. Furthermore, the influence of DSs on the cellular changes induced by the anticancer drug doxorubicin (DOX) has not yet been investigated. Therefore, we examined the cytotoxicity of DSs and their ability to induce cell death and to influence on fluidity and lipid peroxidation (LPO) in the plasma membrane of immortalised B14 fibroblasts, used as a model neoplastic cells, susceptible to DOX-induced changes. The influence of DSs on DOX toxicity was also investigated and compared with that of a natural reference antioxidant α-Tocopherol. By employing the trypan blue exclusion test and double fluorescent staining, we found a significant level of cytotoxicity for DSs and showed that their ability to induce apoptosis and modify plasma membrane fluidity (measured fluorimetrically) is more potent than for α-Tocopherol. The most cytotoxic nitroxide was 5-DS. The electron paramagnetic resonance (EPR) measurements revealed that 5-DS was reduced in B14 cells at the fastest and Met-12-DS at the slowest rate. In the presence of DOX, DSs were reduced slower than alone. The investigated compounds, administered with DOX, enhanced DOX-induced cell death and demonstrated concentration-dependent biphasic influence on membrane fluidity. A-Tocopherol showed weaker effects than DSs, regardless the mode of its application-alone or with DOX. High concentrations of α-Tocopherol and DSs decreased DOX-induced LPO. Substantial cytotoxicity of the DSs suggests that they should be used more carefully in the investigations performed on sensitive cells. Enhancement of DOX toxicity by DSs showed their potential to act as chemosensitizers of cancer cells to anthracycline chemotherapy.


Assuntos
Membrana Celular/metabolismo , Doxorrubicina/efeitos adversos , Fibroblastos/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Óxidos de Nitrogênio , Marcadores de Spin/síntese química , Animais , Linhagem Celular , Cricetulus , Doxorrubicina/farmacologia , Fluidez de Membrana/efeitos dos fármacos , Óxidos de Nitrogênio/síntese química , Óxidos de Nitrogênio/química , Óxidos de Nitrogênio/farmacologia , alfa-Tocoferol/química , alfa-Tocoferol/farmacologia
11.
Int J Mol Sci ; 21(21)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33121005

RESUMO

Venous thromboembolism (VTE) refers to deep vein thrombosis (DVT), whose consequence may be a pulmonary embolism (PE). Thrombosis is associated with significant morbidity and mortality and is the third most common cardiovascular disease after myocardial infarction and stroke. DVT is associated with the formation of a blood clot in a deep vein in the body. Thrombosis promotes slowed blood flow, hypoxia, cell activation, and the associated release of many active substances involved in blood clot formation. All thrombi which adhere to endothelium consist of fibrin, platelets, and trapped red and white blood cells. In this review, we summarise the impact of various factors affecting haemostatic disorders leading to blood clot formation. The paper discusses the causes of thrombosis, the mechanism of blood clot formation, and factors such as hypoxia, the involvement of endothelial cells (ECs), and the activation of platelets and neutrophils along with the effects of bacteria and reactive oxygen species (ROS). Mechanisms related to the action of anticoagulants affecting coagulation factors including antiplatelet drugs have also been discussed. However, many aspects related to the pathogenesis of thrombosis still need to be clarified. A review of the drugs used to treat and prevent thrombosis and natural anticoagulants that occur in the plant world and are traditionally used in Far Eastern medicine has also been carried out.


Assuntos
Anticoagulantes/uso terapêutico , Trombose Venosa/tratamento farmacológico , Animais , Anticoagulantes/farmacologia , Hipóxia Celular/efeitos dos fármacos , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Humanos , Ativação de Neutrófilo , Estresse Oxidativo/efeitos dos fármacos , Ativação Plaquetária , Espécies Reativas de Oxigênio/metabolismo , Trombose Venosa/imunologia , Trombose Venosa/metabolismo
12.
J Inflamm Res ; 13: 387-400, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32801832

RESUMO

Venous thromboembolism (VTE), including deep vein thrombosis (DVT) and pulmonary embolism (PE), is the third leading cause of cardiovascular death in the world. Important risk factors of thrombosis include bed restraint, surgery, major trauma, long journeys, inflammation, pregnancy, and oral contraceptives, previous venous thromboembolism, cancer, and bacterial infections. Sepsis increases the risk of blood clot formation 2-20 times. In this review, we discussed various mechanisms related to the role of bacteria in venous thrombosis also taking into consideration the role of the human microbiome. Many known bacteria, such as Helicobacter pylori, Chlamydia pneumoniae, Mycoplasma pneumoniae, Haemophilus influenzae, Streptococcus pneumoniae, Staphylococcus aureus, and Escherichia coli, causing infections may increase the risk of thrombotic complications through platelet activation or may lead to an inflammatory reaction involving the fibrinolytic system. Additionally, the bacteria participate in the production of factors causing or increasing the risk of cardiovascular diseases. An example can be trimethylamine N-oxide (TMAO) but also uremic toxins (indoxyl sulfate), short-chain fatty acids (SCFA) phytoestrogens, and bile acids. Finally, we presented the involvement of many bacteria in the development of venous thromboembolism and other cardiovascular diseases.

13.
Eur J Med Chem ; 176: 68-91, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31096120

RESUMO

The term varicose vein refers to the twisted and swollen vein visible under the skin surface which occurs most commonly in the leg. Epidemiological studies report a varying percentage of incidences from 2 to 56% in men and <1-60% in women. Venous insufficiency is most often caused by the damage to the valves and walls of the veins. The mechanism of varicose vein formation is complex. It is, however, based on hypotensive blood vessels, hypoxia, and other mechanisms associated with inflammation. This work describes mechanisms related to the formation and development of the varicose vein. It discusses risk factors, pathogenesis of chronic venous disease, markers of the epithelial and leukocyte activation, state of hypoxia and inflammation, reactive oxygen species (ROS) generation, and oxidative stress. Additionally, this paper describes substances of plant origin used in the treatment of venous insufficiency. It also considers the structure of the molecules, their properties, and their mechanisms of action, the structure-activity relationship and chemical properties of flavonoids and other substances. The flavonoids include quercetin derivatives, micronized purified flavonoid fraction (Daflon), natural pine bark extract (Pycnogenol), and others such as triterpene saponine, extracts from Ruscus aculeatus and Centella asiatica, Ginkgo biloba extract, coumarin dereivatives that are used in chronic venous insufficiency. Flavonoids are natural substances found in plants, including fruits, vegetables, flowers, and others. They are important to the circulatory system and critical to blood vessels and the blood flow. Additionally, they have antioxidant, antiinflammatory properties.


Assuntos
Antioxidantes/uso terapêutico , Produtos Biológicos/uso terapêutico , Flavonoides/uso terapêutico , Inflamação/tratamento farmacológico , Varizes/tratamento farmacológico , Insuficiência Venosa/tratamento farmacológico , Doença Crônica/tratamento farmacológico , Humanos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Varizes/patologia , Insuficiência Venosa/patologia
14.
RSC Adv ; 9(55): 31943-31952, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-35530753

RESUMO

This paper describes the synthesis of new 6-aminoflavone (6AFl (3)) and 6-aminochromone (6AC (4)) complexes with Cu(ii) and Ru(ii) ions ([Cu(6AC)2Cl2] (3a), [Cu(6AFl)2Cl2] (4a), [Ru(p-cymene)(6AC)Cl2] (4b)) and comparison of their properties with the previously described 7-aminoflavone (7AFl (1)) and 7-amino-2-methylchromone (7A2MC (2)) analogues. The cytotoxic effect of all these complexes against two human leukaemia cell lines (HL-60 and NALM-6), melanoma WM-115 cells and COLO205 cells, is determined. The cytotoxicity of copper(ii) complexes, especially [Cu(6AFl)2Cl2] (3a) was higher than ruthenium(ii) complexes with the same ligands. Their cytotoxic potency was also stronger in comparison to the referential agents like cisplatin. The pro-oxidative properties were determined for the most active complexes and their ability to generate ROS (reactive oxygen species)/RNS (reactive nitrogen species) in cancer cells was confirmed. The type of ligand and the chemical structure of the tested complexes had an influence on the level of ROS/RNS generated in cancer cells. The redox properties of the copper complex compounds were evaluated by cyclic voltammetry, and compared with the data for Ru(ii) complexes. The reduction and oxidation processes of Ru(iii)/Ru(ii) and Cu(ii)/Cu(i) were described as quasi-reversible.

15.
Int J Mol Sci ; 19(11)2018 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-30423952

RESUMO

This paper describes the substances of plant and marine origin that have anticancer properties. The chemical structure of the molecules of these substances, their properties, mechanisms of action, their structure⁻activity relationships, along with their anticancer properties and their potential as chemotherapeutic drugs are discussed in this paper. This paper presents natural substances from plants, animals, and their aquatic environments. These substances include the vinca alkaloids, mistletoe plant extracts, podophyllotoxin derivatives, taxanes, camptothecin, combretastatin, and others including geniposide, colchicine, artesunate, homoharringtonine, salvicine, ellipticine, roscovitine, maytanasin, tapsigargin, and bruceantin. Compounds (psammaplin, didemnin, dolastin, ecteinascidin, and halichondrin) isolated from the marine plants and animals such as microalgae, cyanobacteria, heterotrophic bacteria, invertebrates (e.g., sponges, tunicates, and soft corals) as well as certain other substances that have been tested on cells and experimental animals and used in human chemotherapy.


Assuntos
Antineoplásicos/farmacologia , Organismos Aquáticos/química , Produtos Biológicos/farmacologia , Plantas/química , Animais , Antineoplásicos/química , Produtos Biológicos/química , Humanos
16.
Chem Res Toxicol ; 31(9): 869-875, 2018 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-30110159

RESUMO

Indoxyl sulfate (IS) is a uremic toxin that has been associated with inflammation and oxidative stress as well as with the progression of chronic kidney disease (CKD). IS is a protein metabolite that is concentrated in the serum of CKD patients. IS is a well-known uremic toxin, but there are very few reports on the effect of IS on cells including mononuclear cells (MNCs). We hypothesized that a high concentration of IS in CKD patients may induce changes in redox balance in the in vitro cells exposed. In the present study, we investigated the effect of IS on free radical production, antioxidant capacity, and protein damage in the mononuclear blood cells. As already determined, the concentrations (0.2 or 1 mM) of IS used in this study do not affect the survival rate of MNCs. For both the concentrations of IS, there was an increase in superoxide and nitric oxide and a release of other reactive oxygen species (ROS) inside the cells, as measured using fluorescent probes. However, an increase in other ROS as indicated by H2DCF-DA was found only for 1 mM of IS. Moreover, a decrease in the non-enzymatic antioxidant capacity and an increase in the superoxide dismutase activity after incubation of the cells with IS were observed. Furthermore, we found an increase in the levels of carbonyl compounds and peroxides in the cells treated with both the concentrations of IS. The obtained results show that IS induces oxidative stress and a decrease in antioxidant defense in cells leading to lipid and protein damage.


Assuntos
Antioxidantes/metabolismo , Radicais Livres/química , Indicã/toxicidade , Leucócitos Mononucleares/efeitos dos fármacos , Catalase/metabolismo , Radicais Livres/metabolismo , Glutationa/sangue , Humanos , Peróxido de Hidrogênio/sangue , Leucócitos Mononucleares/enzimologia , Leucócitos Mononucleares/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase
17.
PLoS One ; 13(3): e0192268, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29554100

RESUMO

OBJECTIVE: In chronic hemodialyzed (CH) patients the balance between production of reactive oxygen species and antioxidant defense system is disturbed and shifted towards oxidative conditions. The properties of albumin in CH patients were studied before hemodialysis (HD) and post-HD. METHODS: Two oxidants were applied, organic t-butyl hydroperoxide (t-BOOH) and inorganic hydroperoxide (H2O2), for oxidation of albumin molecules. By comparison, albumin from healthy donors was also modified by both oxidants. The thiol content in albumin was determined by the Ellman method. Albumin properties were evaluated with the spin labelling technique using two covalently bound spin labels, maleimide (MSL) and iodoacetamide (ISL), and fatty acid spin probe, 16-doxylstearic acid (16-DS). RESULTS: A decrease in thiols level in HD albumin was greater than in control albumin. The t-BOOH modified the microenvironment at the binding site of MSL and ISL in control albumin molecules to a greater extent than hydrogen peroxide. Control albumin treated with t-BOOH and H2O2 showed an increase in the mobility of 16-DS. However, no changes were observed in albumin from CH patients treated with either of the oxidizing agents. CONCLUSION: Both oxidants induced strong conformational changes in albumin from healthy volunteers, but were less effective or ineffective in modification of albumin derived from CH patients. These results show that albumin from CH patients is highly modified in vivo and is not vulnerable to oxidation in the same way as normal albumin.


Assuntos
Conformação Proteica , Diálise Renal , Albumina Sérica/química , Idoso , Humanos , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Masculino , Pessoa de Meia-Idade , Oxirredução , Albumina Sérica/metabolismo , Compostos de Sulfidrila/química , Compostos de Sulfidrila/metabolismo , terc-Butil Hidroperóxido/química , terc-Butil Hidroperóxido/metabolismo
18.
Int J Mol Sci ; 18(11)2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29165366

RESUMO

Nitroxides are stable free radicals that contain a nitroxyl group with an unpaired electron. In this paper, we present the properties and application of nitroxides as antioxidants and anticancer drugs. The mostly used nitroxides in biology and medicine are a group of heterocyclic nitroxide derivatives of piperidine, pyrroline and pyrrolidine. The antioxidant action of nitroxides is associated with their redox cycle. Nitroxides, unlike other antioxidants, are characterized by a catalytic mechanism of action associated with a single electron oxidation and reduction reaction. In biological conditions, they mimic superoxide dismutase (SOD), modulate hemoprotein's catalase-like activity, scavenge reactive free radicals, inhibit the Fenton and Haber-Weiss reactions and suppress the oxidation of biological materials (peptides, proteins, lipids, etc.). The use of nitroxides as antioxidants against oxidative stress induced by anticancer drugs has also been investigated. The application of nitroxides and their derivatives as anticancer drugs is discussed in the contexts of breast, hepatic, lung, ovarian, lymphatic and thyroid cancers under in vivo and in vitro experiments. In this article, we focus on new natural spin-labelled derivatives such as camptothecin, rotenone, combretastatin, podophyllotoxin and others. The applications of nitroxides in the aging process, cardiovascular disease and pathological conditions were also discussed.


Assuntos
Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Óxidos de Nitrogênio/farmacologia , Envelhecimento/metabolismo , Animais , Antineoplásicos/química , Antioxidantes/química , Antioxidantes/uso terapêutico , Suscetibilidade a Doenças , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Óxidos de Nitrogênio/química , Óxidos de Nitrogênio/uso terapêutico , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Superóxido Dismutase/metabolismo
19.
Chem Biol Interact ; 270: 24-32, 2017 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-28400100

RESUMO

The apoptotic/necrotic changes in isolated human peripheral blood mononuclear cells (MNCs) subjected to hydrogen peroxide (H2O2), cyanate (NaOCN) and their combination were examined. The mitochondrial potential (ΔΨm), the activities of caspases (-2, -3, -6, -8 and -9) and the level of carbonyls and amino groups in proteins were determined and DNA fragmentation. Apoptotic or necrotic cells were identified by fluorescence microscopy using double staining with Hoechst 33258/propidium iodide. Treatment of MNCs with NaOCN (1 mmol/L and 2 mmol/L), alone and in combination with H2O2 (100 µmol/L), led to a significant decrease in the content of amine groups and a significant increase in the carbonyl level of MNCs in comparison with the control. Measurements taken at three time points (30, 60 and 150 min) showed a significant decrease in ΔΨm in MNCs incubated with H2O2, cyanate and their combination. The highest decrease in ΔΨm was observed after 150 min, when a combination of NaOCN and H2O2 was applied. We observed significant increases in the activities of caspases-2 and -3 in cells exposed to H2O2 and the combination of NaOCN and H2O2. An increase in caspase-2 but not in caspase-3 activity was noted in cells incubated with cyanate. A significant increase in caspase-9 activity in MNCs was observed in all arrangements of tested compounds in comparison with the control. In H2O2-treated cells, a higher level of necrotic cells was noted in comparison to apoptotic cells, whereas carbamylation led mainly to apoptotic cell death. The combination of cyanate and H2O2 increased the population of necrotic cells.


Assuntos
Carbamatos/farmacologia , Linfócitos/efeitos dos fármacos , Proteínas/metabolismo , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Cianatos/toxicidade , Ativação Enzimática/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/toxicidade , Leucócitos Mononucleares/efeitos dos fármacos , Microscopia de Fluorescência , Oxirredução , Proteínas/efeitos dos fármacos , Padrões de Referência
20.
Exp Physiol ; 102(2): 190-201, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27859777

RESUMO

NEW FINDINGS: What is the central question of this study? What is the influence of a single bout of exercise on the properties of erythrocyte fractions at different ages? What is the main finding and its importance? A single bout of exercise in untrained men induced oxidative stress in erythrocytes and had an influence on antioxidant defense in these cells. Old erythrocytes were more sensitive to oxidative damage than young and middle-aged cells. Higher levels of glutathione in old erythrocyte fractions did not protect them against oxidative stress. It seems that exercise may promote the removal of old erythrocytes from the circulation. The objective of this study was to establish the role of exercise-induced oxidative stress in the erythrocyte fractions [young (YF), middle-aged (MAF) and old (OF)] of young untrained men after acute exercise. Blood samples were collected before exercise, immediately after and 1 h after exercise. The maximal power generated was 292 ± 27 W, and exercise duration was 8.73 ± 0.9 min. Different optical properties and oxidative stress parameters were found in each erythrocyte fraction. Total thiols in YF and MAF after exercise and after 1 h rest were similar to values before exercise; however, in OF {32.7 ± 9.8 nmol [mg haemoglobin (Hb)]-1 } the concentration was lower in comparison to YF [55.5 ± 3.2 nmol (mg Hb)-1 ] and MAF [56.8 ± 7.7 nmol (mg Hb)-1 ] and increased 1 h later (P < 0.0002). The glutathione concentration was higher in OF [8.4 ± 0.4 nmol (mg Hb)-1 ] than in YF [4.5 ± 0.6 nmol (mg Hb)-1 ] and MAF [4.8 ± 0.5 nmol (mg Hb)-1 ; P < 0.0002] and did not change after exercise or 1 h later. In OF, the peroxide level was higher after exercise [1.2 ± 0.2 nmol (mg Hb)-1 ] and 1 h later [1.1 ± 0.2 nmol (mg Hb)-1 ], when compared with samples before exercise [0.9 ± 0.1 nmol (mg Hb)-1 ; P < 0.05]. Similar results were observed in YF and MAF. The level of thiobarbituric acid reactive substances (TBARS) was ∼2.5-fold higher in OF [0.19 ± 0.04 nmol (mg Hb)-1 ] when compared with YF [0.07 ± 0.01 nmol (mg Hb)-1 ] and MAF [0.08 ± 0.02 nmol (mg Hb)-1 ; P < 0.0002] and was increased after exercise, remaining unchanged 1 h later. In YF and MAF, no difference in the level of TBARS was detected after exercise or 1 h later. No difference in membrane fluidity was observed in all fractions. The erythrocyte OF appeared to be more sensitive to cellular oxidative damage.


Assuntos
Eritrócitos/fisiologia , Exercício Físico/fisiologia , Estresse Oxidativo/fisiologia , Adulto , Eritrócitos/metabolismo , Glutationa/metabolismo , Humanos , Masculino , Oxirredução , Descanso/fisiologia , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...