Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Biopharm ; 201: 114368, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38880401

RESUMO

Continuous manufacturing is gaining increasing interest in the pharmaceutical industry, also requiring real-time and non-destructive quality monitoring. Multiple studies have already addressed the possibility of surrogate in vitro dissolution testing, but the utilization has rarely been demonstrated in real-time. Therefore, in this work, the in-line applicability of an artificial intelligence-based dissolution surrogate model is developed the first time. NIR spectroscopy-based partial least squares regression and artificial neural networks were developed and tested in-line and at-line to assess the blend uniformity and dissolution of encapsulated acetylsalicylic acid (ASA) - microcrystalline cellulose (MCC) powder blends in a continuous blending process. The studied blend is related to a previously published end-to-end manufacturing line, where the varying size of the ASA crystals obtained from a continuous crystallization significantly affected the dissolution of the final product. The in-line monitoring was suitable for detecting the variations in the ASA content and dissolution caused by the feeding of ASA with different particle sizes, and the at-line predictions agreed well with the measured validation dissolution curves (f2 = 80.5). The results were further validated using machine vision-based particle size analysis. Consequently, this work could contribute to the advancement of RTRT in continuous end-to-end processes.


Assuntos
Aspirina , Celulose , Pós , Solubilidade , Espectroscopia de Luz Próxima ao Infravermelho , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Pós/química , Celulose/química , Aspirina/química , Tamanho da Partícula , Redes Neurais de Computação , Liberação Controlada de Fármacos , Composição de Medicamentos/métodos , Química Farmacêutica/métodos , Cristalização , Análise dos Mínimos Quadrados , Excipientes/química
2.
Int J Pharm ; 635: 122725, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36804519

RESUMO

Continuous crystallization in the presence of polymer additives is a promising method to omit some drug formulation steps by improving the technological and also pharmacological properties of crystalline active ingredients. Accordingly, this study focuses on developing an additive-assisted continuous crystallization process using polyvinylpyrrolidone in a connected ultrasonicated plug flow crystallizer and an overflow mixed suspension mixed product removal (MSMPR) crystallizer system. We aimed to improve the flowability characteristics of small, columnar primary plug flow crystallizer-produced acetylsalicylic acid crystals as a model drug by promoting their agglomeration in MSMPR crystallizer with polyvinylpyrrolidone. The impact of the cooling antisolvent crystallization process parameters (temperature, polymer amount, total flow rate) on product quality and quantity was investigated. Finally, a spatially segmented antisolvent dosing method was also evaluated. The developed technology enabled the manufacture of purified, constant quality products in a short startup period, even with an 85% yield. We found that a higher polymer amount (7.5-14%) could facilitate agglomeration resulting in "good" flowability without altering the favorable dissolution characteristics of the primary particles.


Assuntos
Polímeros , Povidona , Aspirina , Cristalização/métodos , Transição de Fase , Solubilidade
3.
Int J Pharm ; 626: 122197, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36115464

RESUMO

Glucose is widely used in both the food and pharmaceutical industry. However, the application of industrially crystallized glucose in solid dosage forms is challenged by its poor flowability and tabletability. To improve these characteristics continuous twin-screw granulation was tested, which has the potential to be integrated into the continuous production of solid glucose from corn starch. A completely continuous manufacturing line (including drying and milling) was developed and the different production steps were examined and synchronized. Our line was supplemented with an in-line applicable near-infrared spectroscopic probe to monitor the moisture content of the milled granules in real-time. The flowability and tabletability of the powder improved significantly, and tablets with acceptable breaking force (greater than 100 N) could be prepared from the granules. The developed continuous line can be easily installed into the industrial solid glucose production process resulting in pure glucose granules with adequate flow properties and tabletability in a simple, continuous and efficient way.


Assuntos
Glucose , Amido , Composição de Medicamentos/métodos , Tamanho da Partícula , Pós/química , Amido/química , Comprimidos/química , Tecnologia Farmacêutica/métodos
4.
Int J Pharm ; 624: 121950, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35753540

RESUMO

In this study, a concentration predicting soft sensor was achieved based on the Residence Time Distribution (RTD) of an integrated, three-step pharmaceutical formulation line. The RTD was investigated with color-based tracer experiments using image analysis. Twin-screw wet granulation (TSWG) was directly coupled with a horizontal fluid bed dryer and an oscillating mill. Based on integrated measurement, we proved that it is also possible to couple the unit operations in silico. Three surrogate tracers were produced with a coloring agent to investigate the separated unit operations and the solid and liquid inputs of the TSWG. The soft sensor's prediction was compared to validating experiments of a 0.05 mg/g (15% of the nominal) concentration change with High-Performance Liquid Chromatography (HPLC) reference measurements of the active ingredient proving the adequacy of the soft sensor (RMSE < 4%).


Assuntos
Composição de Medicamentos , Tecnologia Farmacêutica , Composição de Medicamentos/métodos , Tamanho da Partícula , Tecnologia Farmacêutica/métodos
5.
Biotechnol J ; 17(5): e2100395, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35084785

RESUMO

An innovative, Raman spectroscopy-based monitoring and control system is introduced in this paper for designing dynamic feeding strategies that allow the maintenance of key cellular nutrients at an ideal level in Chinese hamster ovary cell culture. The Partial Least Squares calibration models built for glucose, lactate and 16 (out of 20) individual amino acids had very good predictive power with low root mean square errors values and high square correlation coefficients. The developed models used for real-time measurement of nutrient and by-product concentrations allowed us to gain better insight into the metabolic behavior and nutritional consumption of cells. To establish a more beneficial nutritional environment for the cells, two types of dynamic feeding strategies were used to control the delivery of two-part multi-component feed media according to the prediction of Raman models (glucose or arginine). As a result, instead of high fluctuations, the nutrients (glucose together with amino acids) were maintained at the desired level providing a more balanced environment for the cells. Moreover, the use of amino acid-based feeding control enabled to prevent the excessive nutrient replenishment and was economically beneficial by significantly reducing the amount of supplied feed medium compared to the glucose-based dynamic fed culture.


Assuntos
Técnicas de Cultura Celular por Lotes , Glucose , Aminoácidos/metabolismo , Animais , Técnicas de Cultura Celular por Lotes/métodos , Reatores Biológicos , Glicemia , Automonitorização da Glicemia , Células CHO , Cricetinae , Cricetulus , Meios de Cultura/química , Glucose/metabolismo , Nutrientes , Análise Espectral Raman
6.
Eur J Pharm Biopharm ; 169: 64-77, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34562574

RESUMO

In this paper we present a thorough description of the digital twin development for a continuous pharmaceutical powder blending process in accordance with the Process Analytical Technologies (PAT) and Quality by Design (QbD) guidelines. A low-dosage system of caffeine active pharmaceutical ingredient (API) and dextrose excipient was examined via continuous blending experiments. Near infrared (NIR) spectroscopy-based process analytics were applied; quantitative evaluation of spectra was achieved using multivariate data analysis. The blending system was represented with mechanistic residence time distribution (RTD) models and two types of recurrent artificial neural networks (ANN), experimental datasets were used for model training or fitting and validation. Detailed comparison of the two modelling approaches, the optimization of the model-based digital twin, and efficiency of the soft sensor-based process monitoring is presented through several validating simulations. Both RTD models and nonlinear autoregressive neural networks demonstrated excellent predictive power for the low dosage blending process. RTD models can prove to be more advantageous in industrial development as they are less resource-intensive to develop and prediction accuracy on low concentration levels lacks dependency from the precision of chemometric calibration. Reduced material costs and limited development timeframe render the digital twin an efficient tool in technological development.


Assuntos
Química Farmacêutica/métodos , Composição de Medicamentos , Pós , Tecnologia Farmacêutica , Calibragem , Ciência de Dados , Teoria da Densidade Funcional , Composição de Medicamentos/métodos , Composição de Medicamentos/normas , Composição de Medicamentos/tendências , Humanos , Redes Neurais de Computação , Pós/análise , Pós/química , Pós/farmacologia , Reprodutibilidade dos Testes , Espectroscopia de Luz Próxima ao Infravermelho , Tecnologia Farmacêutica/métodos , Tecnologia Farmacêutica/normas
7.
Eur J Pharm Sci ; 164: 105907, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34118411

RESUMO

Electrospinning is a technology for manufacture of nano- and micro-sized fibers, which can enhance the dissolution properties of poorly water-soluble drugs. Tableting of electrospun fibers have been demonstrated in several studies, however, continuous manufacturing of tablets have not been realized yet. This research presents the first integrated continuous processing of milled drug-loaded electrospun materials to tablet form supplemented by process analytical tools for monitoring the active pharmaceutical ingredient (API) content. Electrospun fibers of an amorphous solid dispersion (ASD) of itraconazole and poly(vinylpyrrolidone-co-vinyl acetate) were produced using high speed electrospinning and afterwards milled. The milled fibers with an average fiber diameter of 1.6 ± 0.9 µm were continuously fed with a vibratory feeder into a twin-screw blender, which was integrated with a tableting machine to prepare tablets with ~ 10 kN compression force. The blend of fibers and excipients leaving the continuous blender was characterized with a bulk density of 0.43 g/cm3 and proved to be suitable for direct tablet compression. The ASD content, and thus the API content was determined in-line before tableting and at-line after tableting using near-infrared and Raman spectroscopy. The prepared tablets fulfilled the USP <905> content uniformity requirement based on the API content of ten randomly selected tablets. This work highlights that combining the advantages of electrospinning (e.g. less solvent, fast and gentle drying, low energy consumption, and amorphous products with high specific surface area) and the continuous technologies opens a new and effective way in the field of manufacturing of the poorly water-soluble APIs.


Assuntos
Excipientes , Análise Espectral Raman , Dessecação , Composição de Medicamentos , Itraconazol , Comprimidos , Tecnologia Farmacêutica
8.
Pharmaceutics ; 12(11)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233635

RESUMO

The present paper reports a thorough continuous powder blending process design of acetylsalicylic acid (ASA) and microcrystalline cellulose (MCC) based on the Process Analytical Technology (PAT) guideline. A NIR-based method was applied using multivariate data analysis to achieve in-line process monitoring. The process dynamics were described with residence time distribution (RTD) models to achieve deep process understanding. The RTD was determined using the active pharmaceutical ingredient (API) as a tracer with multiple designs of experiment (DoE) studies to determine the effect of critical process parameters (CPPs) on the process dynamics. To achieve quality control through material diversion from feeding data, soft sensor-based process control tools were designed using the RTD model. The operation block model of the system was designed to select feasible experimental setups using the RTD model, and feeder characterizations as digital twins, therefore visualizing the output of theoretical setups. The concept significantly reduces the material and instrumental costs of process design and implementation.

9.
Biotechnol Prog ; 36(6): e3052, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32692473

RESUMO

The use of Process Analytical Technology tools coupled with chemometrics has been shown great potential for better understanding and control of mammalian cell cultivations through real-time process monitoring. In-line Raman spectroscopy was utilized to determine the glucose concentration of the complex bioreactor culture medium ensuring real-time information for our process control system. This work demonstrates a simple and fast method to achieve a robust partial least squares calibration model under laboratory conditions in an early phase of the development utilizing shake flask and bioreactor cultures. Two types of dynamic feeding strategies were accomplished where the multi-component feed medium additions were controlled manually and automatically based on the Raman monitored glucose concentration. The impact of these dynamic feedings was also investigated and compared to the traditional bolus feeding strategy on cellular metabolism, cell growth, productivity, and binding activity of the antibody product. Both manual and automated dynamic feeding strategies were successfully applied to maintain the glucose concentration within a narrower and lower concentration range. Thus, besides glucose, the glutamate was also limited at low level leading to reduced production of inhibitory metabolites, such as lactate and ammonia. Consequently, these feeding control strategies enabled to provide beneficial cultivation environment for the cells. In both experiments, higher cell growth and prolonged viable cell cultivation were achieved which in turn led to increased antibody product concentration compared to the reference bolus feeding cultivation.


Assuntos
Adalimumab/química , Anticorpos Monoclonais/biossíntese , Técnicas de Cultura Celular por Lotes/métodos , Glucose/metabolismo , Adalimumab/biossíntese , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Reatores Biológicos , Células CHO , Cricetinae , Cricetulus , Meios de Cultura/química , Meios de Cultura/farmacologia , Glucose/química , Ácido Láctico/química , Ácido Láctico/metabolismo , Análise Espectral Raman
10.
Int J Pharm ; 581: 119297, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32243964

RESUMO

An end-to-end continuous pharmaceutical manufacturing process was developed for the production of conventional direct compressed tablets on a proof-of-concept level for the first time. The output reaction mixture of the flow synthesis of acetylsalicylic acid was crystallized continuously in a mixed suspension mixed product removal crystallizer. The crystallizer was directly connected to a continuous filtration carousel device, thus the crystallization, filtration and drying of acetylsalicylic acid (ASA) was carried out in an integrated 2-step process. Steady state was reached during longer operations and the interaction of process parameters was evaluated in a series of experiments. The filtered crystals were ready for further processing in a following continuous blending and tableting experiment due to the good flowability of the material. The ASA collected during the crystallization-filtration experiments was fed into a continuous twin-screw blender along with microcrystalline cellulose as tableting excipient. After continuous blending Near-Infrared spectroscopy was applied to in-line analyze the drug content of the powder mixture. A belt conveyor carried the mixture towards an eccentric lab-scale tablet press, which continuously produced 500 mg ASA-loaded compressed tablets of 100 mg dose strength. Thus, starting from raw materials, the final drug product was obtained by continuous manufacturing steps with appropriate quality.


Assuntos
Aspirina/síntese química , Química Farmacêutica/métodos , Força Compressiva , Cristalização/métodos , Aspirina/análise , Celulose/análise , Celulose/síntese química , Filtração/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Comprimidos
11.
Int J Pharm ; 580: 119223, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32171898

RESUMO

The present paper reports the first monitoring and control of ultra-low dose powder feeding using a camera image-based mass flow measurement system. Caffeine was fed via a single-screw microfeeder as a model active pharmaceutical ingredient (API). The mass, mass flow and sizes of the particles were successfully monitored in real-time by the developed videometric system consisting of a high-speed process camera coupled with an image analysis software. The system was also tested in feedback control mode to automatically reach the desired mass flow values by adjusting the feeder speed based on the mass flow measured by the image analysis system. Based on these features, the developed videometric system can serve as a multi-purpose PAT-tool and can provide valuable real-time information about the process which is indispensable for modern continuous pharmaceutical manufacturing.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Pós/química , Tecnologia Farmacêutica/métodos , Gravação em Vídeo/métodos , Cafeína/química , Retroalimentação , Software
12.
Int J Pharm ; 530(1-2): 21-29, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28723408

RESUMO

The integration of Process Analytical Technology (PAT) initiative into the continuous production of pharmaceuticals is indispensable for reliable production. The present paper reports the implementation of in-line Raman spectroscopy in a continuous blending and tableting process of a three-component model pharmaceutical system, containing caffeine as model active pharmaceutical ingredient (API), glucose as model excipient and magnesium stearate as lubricant. The real-time analysis of API content, blend homogeneity, and tablet content uniformity was performed using a Partial Least Squares (PLS) quantitative method. The in-line Raman spectroscopic monitoring showed that the continuous blender was capable of producing blends with high homogeneity, and technological malfunctions can be detected by the proposed PAT method. The Raman spectroscopy-based feedback control of the API feeder was also established, creating a 'Process Analytically Controlled Technology' (PACT), which guarantees the required API content in the produced blend. This is, to the best of the authors' knowledge, the first ever application of Raman-spectroscopy in continuous blending and the first Raman-based feedback control in the formulation technology of solid pharmaceuticals.


Assuntos
Análise Espectral Raman , Comprimidos , Tecnologia Farmacêutica , Cafeína/administração & dosagem , Química Farmacêutica , Excipientes/química , Glucose/química , Lubrificantes/química , Preparações Farmacêuticas , Pós , Espectroscopia de Luz Próxima ao Infravermelho , Ácidos Esteáricos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...