Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 15: 1365051, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572427

RESUMO

Membrane transporters playing an important role in the passage of drugs, metabolites and nutrients across the membranes of the brain cells have been shown to be involved in pathogenesis of Alzheimer's disease (AD). However, little is known about sex-specific changes in transporter protein expression at the brain in AD. Here, we investigated sex-specific alterations in protein expression of three ATP-binding cassette (ABC) and five solute carriers (SLC) transporters in the prefrontal cortex of a commonly used model of familial AD (FAD), 5xFAD mice. Sensitive liquid chromatography tandem mass spectrometry-based quantitative targeted absolute proteomic analysis was applied for absolute quantification of transporter protein expression. We compared the changes in transporter protein expressions in 7-month-old male and female 5xFAD mice versus sex-matched wild-type mice. The study revealed a significant sex-specific increase in protein expression of ABCC1 (p = 0.007) only in male 5xFAD mice as compared to sex-matched wild-type animals. In addition, the increased protein expression of glucose transporter 1 (p = 0.01), 4F2 cell-surface antigen heavy chain (p = 0.01) and long-chain fatty acid transport protein 1 (p = 0.02) were found only in female 5xFAD mice as compared to sex-matched wild-type animals. Finally, protein expression of alanine/serine/cysteine/threonine transporter 1 was upregulated in both male (p = 0.02) and female (p = 0.002) 5xFAD mice. The study provides important information about sex-specific changes in brain cortical transporter expression in 5xFAD mice, which will facilitate drug development of therapeutic strategies for AD targeting these transporters and drug delivery research.

2.
Eur J Pharm Sci ; 188: 106527, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37451410

RESUMO

Reduced activity of efflux transporter ABCG2, caused e.g., by inhibition or decreased function genetic variants, can increase drug absorption and plasma levels. ABCG2 has one clinically significant single nucleotide variant Q141K (c.421C>A), which leads to decreased protein levels and transport activity. In addition to Q141K, ABCG2 has over 500 rare (<1% minor allele frequency) nonsynonymous variants, but their functionality remains unknown. We studied the transport activity and abundance of 30 rare ABCG2 variants. The variants were transiently expressed in HEK293 cells. Transport activity and protein abundance were measured from inside-out crude membrane vesicles. Results were normalised to the reference ABCG2, while Q141K was used to categorise variants into decreased and normal function phenotypes based on their apparent transport activity. Fourteen variants (G80E, D128V, T434M, Q437R, C438R, C438W, C438Y, L479S, P480L, S486N, T512N, S519P, G553D and K647E) had similar or lower apparent transport activity than Q141K and thus were categorised as having a decreased function phenotype. Protein abundance could not explain all of the observed changes in transport activity: Only six variants (D128V, Q437R, C438R, S519P, G553D, and K647E) had similar or lower abundance compared to Q141K. The decreased function variants may increase systemic drug exposure and therefore cause interindividual variability in pharmacokinetics. In the future, in vitro phenotype classification may help to design personalised drug treatments.


Assuntos
Polimorfismo de Nucleotídeo Único , Humanos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transporte Biológico , Células HEK293 , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fenótipo
3.
J Pharm Sci ; 112(9): 2581-2590, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37220829

RESUMO

Triple negative breast cancer (TNBC) is among the most aggressive and deadly cancer subtypes. Intra-tumoral hypoxia is associated with aggressiveness and drug resistance in TNBC. One of the underlying mechanisms of hypoxia-induced drug resistance is the elevated expression of efflux transporters such as breast cancer resistant protein (ABCG2). In the present study, we investigated the possibility of ameliorating ABCG2-mediated drug resistance in hypoxic TNBC cells by monoacylglycerol lipase (MAGL) inhibition and the consequent downregulation of ABCG2 expression. The effect of MAGL inhibition on ABCG2 expression, function, and efficacy of regorafenib, an ABCG2 substrate was investigated in cobalt dichloride (CoCl2) induced pseudohypoxic TNBC (MDA-MB-231) cells, using quantitative targeted absolute proteomics, qRT-PCR, anti-cancer drug accumulation in the cells, cell invasiveness and resazurin-based cell viability assays. Our results showed that hypoxia-induced ABCG2 expression led to low regorafenib intracellular concentrations, reduced the anti-invasiveness efficacy, and elevated half maximal inhibitory concentration (IC50) of regorafenib in vitro MDA-MB-231 cells. MAGL inhibitor, JJKK048, reduced ABCG2 expression, increased regorafenib cell accumulation, which led to higher regorafenib efficacy. In conclusion, hypoxia-induced regorafenib resistance due to ABCG2 over-expression in TNBC cells can be ameliorated by MAGL inhibition.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Monoacilglicerol Lipases/metabolismo , Monoacilglicerol Lipases/farmacologia , Linhagem Celular Tumoral , Hipóxia , Resistencia a Medicamentos Antineoplásicos , Proteínas de Neoplasias/metabolismo
4.
Sci Transl Med ; 15(691): eabq2915, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37043557

RESUMO

Tauopathies are neurodegenerative diseases that are characterized by accumulation of hyperphosphorylated tau protein, higher-order aggregates, and tau filaments. Protein phosphatase 2A (PP2A) is a major tau dephosphorylating phosphatase, and a decrease in its activity has been demonstrated in tauopathies, including Alzheimer's disease. Prolyl oligopeptidase is a serine protease that is associated with neurodegeneration, and its inhibition normalizes PP2A activity without toxicity under pathological conditions. Here, we assessed whether prolyl oligopeptidase inhibition could protect against tau-mediated toxicity in cellular models in vitro and in the PS19 transgenic mouse model of tauopathy carrying the human tau-P301S mutation. We show that inhibition of prolyl oligopeptidase with the inhibitor KYP-2047 reduced tau aggregation in tau-transfected HEK-293 cells and N2A cells as well as in human iPSC-derived neurons carrying either the P301L or tau-A152T mutation. Treatment with KYP-2047 resulted in increased PP2A activity and activation of autophagic flux in HEK-293 cells and N2A cells and in patient-derived iNeurons, as indicated by changes in autophagosome and autophagy receptor markers; this contributed to clearance of insoluble tau. Furthermore, treatment of PS19 transgenic mice for 1 month with KYP-2047 reduced tau burden in the brain and cerebrospinal fluid and slowed cognitive decline according to several behavioral tests. In addition, a reduction in an oxidative stress marker was seen in mouse brains after KYP-2047 treatment. This study suggests that inhibition of prolyl oligopeptidase could help to ameliorate tau-dependent neurodegeneration.


Assuntos
Prolil Oligopeptidases , Tauopatias , Camundongos , Humanos , Animais , Células HEK293 , Tauopatias/metabolismo , Proteínas tau/metabolismo , Camundongos Transgênicos , Serina Endopeptidases/metabolismo , Inibidores Enzimáticos , Modelos Animais de Doenças
5.
Pharmaceutics ; 15(2)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36839686

RESUMO

Transporter-mediated drug resistance is a major obstacle in anticancer drug delivery and a key reason for cancer drug therapy failure. Membrane solute carrier (SLC) transporters play a crucial role in the cellular uptake of drugs. The expression and function of the SLC transporters can be down-regulated in cancer cells, which limits the uptake of drugs into the tumor cells, resulting in the inefficiency of the drug therapy. In this review, we summarize the current understanding of low-SLC-transporter-expression-mediated drug resistance in different types of cancers. Recent advances in SLC-transporter-targeting strategies include the development of transporter-utilizing prodrugs and nanocarriers and the modulation of SLC transporter expression in cancer cells. These strategies will play an important role in the future development of anticancer drug therapies by enabling the efficient delivery of drugs into cancer cells.

6.
Pharmaceutics ; 14(11)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36365256

RESUMO

Cytosolic phospholipase A2 (cPLA2) is an enzyme regulating membrane phospholipid homeostasis and the release of arachidonic acid utilized in inflammatory responses. It represents an attractive target for the treatment of Alzheimer's disease (AD). Previously, we showed that lipopolysaccharide (LPS)-induced systemic inflammation caused abnormal lipid metabolism in the brain of a transgenic AD mouse model (APdE9), which might be associated with potential changes in cPLA2 activity. Here, we investigated changes in cPLA2 expression and activity, as well as the molecular mechanisms underlying these alterations due to chronic LPS administration in the cerebral cortex of female APdE9 mice as compared to saline- and LPS-treated female wild-type mice and saline-treated APdE9 mice. The study revealed the significant effects of genotype LPS treatment on cortical cPLA2 protein expression and activity in APdE9 mice. LPS treatment resulted in nuclear factor kappa-light-chain-enhancer of activated B cells (NFkB) activation in the cortex of APdE9 mice. The gene expressions of inflammation markers Il1b and Tnfa were significantly elevated in the cortex of both APdE9 groups compared to the wild-type groups. The study provides evidence of the elevated expression and activity of cPLA2 in the brain cortex of APdE9 mice after chronic LPS treatment, which could be associated with NFkB activation.

7.
Neuroscience ; 496: 165-178, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35636730

RESUMO

Neuroinflammation is an important feature in the pathogenesis and progression of central nervous system (CNS) diseases including Alzheimer's disease (AD). One of the widely used animal models of peripherally induced neuroinflammation and neurodegeneration is a lipopolysaccharide (LPS)-induced inflammation mouse model. An acute LPS administration has been widely used for investigation of inflammation-associated disease and testing inflammation-targeting drug candidates. In the present metabolomic, lipidomic and proteomic study, we investigated short-term effects of systemic inflammation induced by LPS administration on the mouse plasma and brain cortical and hippocampal metabolome, lipidome as well as expression of the brain cortical proteins which were shown to be involved in inflammation-associated CNS diseases. From a global perspective, the hippocampus was more vulnerable to the effects of LPS-induced systemic inflammation than the cortex. In addition, the study revealed several brain region-specific changes in metabolic pathways and lipids, such as statistically significant increase in several cortical and hippocampal phosphatidylcholines/phosphatidylethanolamines, and significantly decreased levels of brain cortical betaine after LPS treatment in mice. Moreover, LPS treatment in mice caused significantly increased protein expression of GluN1 receptor in the brain cortex. The revealed perturbations in the LPS-induced inflammation mouse model may give insight into the mechanisms underlying inflammation-associated CNS diseases. In addition, the finding of the study provide important information about the appropriate use of the model during target validation and drug candidate testing.


Assuntos
Lipidômica , Lipopolissacarídeos , Animais , Modelos Animais de Doenças , Inflamação/metabolismo , Camundongos , Proteômica
8.
Neurobiol Dis ; 169: 105741, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35472634

RESUMO

There is growing evidence that membrane transporters expressed at the blood-brain barrier (BBB) and brain parenchymal cells play an important role in Alzheimer's disease (AD) development and progression. However, quantitative information about changes in transporter protein expression at neurovascular unit cells in AD is limited. Here, we studied the changes in the absolute protein expression of five ATP-binding cassette (ABC) and thirteen solute carrier (SLC) transporters in the isolated brain microvessels and brain cortical tissue of TgF344-AD rats compared to age-matched wild-type (WT) animals using liquid chromatography tandem mass spectrometry based quantitative targeted absolute proteomic analysis. Moreover, sex-specific alterations in transporter expression in the brain cortical tissue of this model were examined. Protein expressions of Abcg2, Abcc1 and FATP1 (encoded by Slc27a1) in the isolated brain microvessels of TgF344-AD rats were 3.1-, 2.0-, 4.3-fold higher compared to WT controls, respectively (p < 0.05). Abcc1 and 4F2hc (encoded by Slc3a2) protein expression was significantly up-regulated in the brain cortical tissue of male TgF344-AD rats compared to male WT rats (p < 0.05). The study provides novel information for the elucidation of molecular mechanisms underlying AD and valuable knowledge about the optimal use of the TgF344-AD rat model in AD drug development and drug delivery research.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Feminino , Masculino , Proteínas de Membrana Transportadoras , Microvasos/metabolismo , Proteômica/métodos , Ratos
9.
Pharm Res ; 39(7): 1415-1455, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35359241

RESUMO

Limited drug delivery to the brain is one of the major reasons for high failure rates of central nervous system (CNS) drug candidates. The blood-brain barrier (BBB) with its tight junctions, membrane transporters, receptors and metabolizing enzymes is a main player in drug delivery to the brain, restricting the entrance of the drugs and other xenobiotics. Current knowledge about the uptake transporters expressed at the BBB and brain parenchymal cells has been used for delivery of CNS drugs to the brain via targeting transporters. Although many transporter-utilizing (pro)drugs and nanocarriers have been developed to improve the uptake of drugs to the brain, their success rate of translation from preclinical development to humans is negligible. In the present review, we provide a systematic summary of the current progress in development of transporter-utilizing (pro)drugs and nanocarriers for delivery of drugs to the brain. In addition, we applied CNS pharmacokinetic concepts for evaluation of the limitations and gaps in investigation of the developed transporter-utilizing (pro)drugs and nanocarriers. Finally, we give recommendations for a rational development of transporter-utilizing drug delivery systems targeting the brain based on CNS pharmacokinetic principles.


Assuntos
Encéfalo , Pró-Fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Fármacos do Sistema Nervoso Central , Sistemas de Liberação de Medicamentos , Humanos , Proteínas de Membrana Transportadoras/metabolismo
10.
Pharm Res ; 38(10): 1663-1675, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34647232

RESUMO

PURPOSE: Organic Anion Transporting Polypeptide 1B1 (OATP1B1) mediates hepatic influx and clearance of many drugs, including statins. The SLCO1B1 gene is highly polymorphic and its function-impairing variants can predispose patients to adverse effects. The effects of rare genetic variants of SLCO1B1 are mainly unexplored. We examined the impact of eight naturally occurring rare variants and the well-known SLCO1B1 c.521C > T (V174A) variant on in vitro transport activity, cellular localization and abundance. METHODS: Transport of rosuvastatin and 2,7-dichlorofluorescein (DCF) in OATP1B1 expressing HEK293 cells was measured to assess changes in activity of the variants. Immunofluorescence and confocal microscopy determined the cellular localization of OATP1B1 and LC-MS/MS based quantitative targeted absolute proteomics analysis quantified the amount of OATP1B1 in crude membrane fractions. RESULTS: All studied variants, with the exception of P336R, reduced protein abundance to varying degree. V174A reduced protein abundance the most, over 90% compared to wild type. Transport function was lost in G76E, V174A, L193R and R580Q variants. R181C decreased activity significantly, while T345M and L543W retained most of wild type OATP1B1 activity. P336R showed increased activity and H575L decreased the transport of DCF significantly, but not of rosuvastatin. Decreased activity was interrelated with lower absolute protein abundance in the studied variants. CONCLUSIONS: Transmembrane helices 2, 4 and 11 appear to be crucial for proper membrane localization and function of OATP1B1. Four of the studied variants were identified as loss-of-function variants and as such could make the individual harboring these variants susceptible to altered pharmacokinetics and adverse effects of substrate drugs.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Isoquinolinas/metabolismo , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Nucleotídeos/metabolismo , Rosuvastatina Cálcica/metabolismo , Transporte Biológico , Interações Medicamentosas , Expressão Gênica , Células HEK293 , Humanos , Fígado , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Mutação , Polimorfismo Genético , Espectrometria de Massas em Tandem
11.
J Pharm Sci ; 110(12): 3953-3962, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34403652

RESUMO

Alzheimer's disease (AD) is an incurable disease, with complex pathophysiology and a myriad of proteins involved in its development. In this study, we applied quantitative targeted absolute proteomic analysis for investigation of changes in potential AD drug targets, biomarkers, and transporters in cerebral cortices of lipopolysaccharide (LPS)-induced neuroinflammation mouse model, familial AD mice (APdE9) with and without LPS treatment as compared to age-matched wild type (WT) mice. The ABCB1, ABCG2 and GluN1 protein expression ratios between LPS treated APdE9 and WT control mice were 0.58 (95% CI 0.44-0.72), 0.65 (95% CI 0.53-0.77) and 0.61 (95% CI 0.52-0.69), respectively. The protein expression levels of other proteins such as MGLL, COX-2, CytC, ABCC1, ABCC4, SLC2A1 and SLC7A5 did not differ between the study groups. Overall, the study revealed that systemic inflammation can alter ABCB1 and ABCG2 protein expression in brain in AD, which can affect intra-brain drug distribution and play a role in AD development. Moreover, the inflammatory insult caused by peripheral infection in AD may be important factor triggering changes in GluN1 protein expression. However, more studies need to be performed in order to confirm these findings. The quantitative information about the expression of selected proteins provides important knowledge, which may help in the optimal use of the mouse models in AD drug development and better translation of preclinical data to humans.


Assuntos
Doença de Alzheimer , Transportadores de Cassetes de Ligação de ATP/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Inflamação/metabolismo , Camundongos , Camundongos Transgênicos , Proteômica , Receptores Ionotrópicos de Glutamato/metabolismo
12.
Sci Rep ; 11(1): 13076, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158563

RESUMO

Peripheral infections followed by systemic inflammation may contribute to the onset of Alzheimer`s disease (AD) and accelerate the disease progression later in life. Yet, the impact of systemic inflammation on the plasma and brain tissue metabolome and lipidome in AD has not been investigated. In this study, targeted metabolomic and untargeted lipidomic profiling experiments were performed on the plasma, cortices, and hippocampi of wild-type (WT) mice and transgenic APdE9 mice after chronic lipopolysaccharide (LPS) treatment, as well as saline-treated APdE9 mice. The lipidome and the metabolome of these mice were compared to saline-treated WT animals. In the brain tissue of all three models, the lipidome was more influenced than the metabolome. The LPS-treated APdE9 mice had the highest number of changes in brain metabolic pathways with significant alterations in levels of lysine, myo-inositol, spermine, phosphocreatine, acylcarnitines and diacylglycerols, which were not observed in the saline-treated APdE9 mice. In the WT mice, the effect of the LPS administration on metabolome and lipidome was negligible. The study provided exciting information about the biochemical perturbations due to LPS-induced inflammation in the transgenic AD model, which can significantly enhance our understanding of the role of systemic inflammation in AD pathogenesis.


Assuntos
Precursor de Proteína beta-Amiloide/imunologia , Encéfalo/metabolismo , Inflamação/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Hipocampo/metabolismo , Lipidômica/métodos , Masculino , Metaboloma , Metabolômica/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Presenilina-1/metabolismo
13.
Bioorg Chem ; 112: 104921, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33933805

RESUMO

l-Type amino acid transporter 1 (LAT1) is an interesting protein due to its peculiar expression profile. It can be utilized not only as a carrier for improved or targeted drug delivery, e.g., into the brain but also as a target protein by which amino acid supply can be restricted, e.g., from the cancer cells. The recognition and binding processes of LAT1-ligands, such as amino acids and clinically used small molecules, including l-dopa, gabapentin, and melphalan, are today well-known. Binding to LAT1 is crucial, particularly when designing the LAT1-inhibitors. However, it will not guarantee effective translocation across the cell membrane via LAT1, which is a definite requirement for LAT1-substrates, such as drugs that elicit their pharmacological effects inside the cells. Therefore, in the present study, the accumulation of known LAT1-utilizing compounds into the selected LAT1-expressing cancer cells (MCF-7) was explored experimentally over a time period. The differences found among the transport efficiency and affinity of the studied compounds for LAT1 were subsequently explained by docking the ligands into the human LAT1 model (based on the recent cryo-electron microscopy structure). Thus, the findings of this study clarify the favorable structural requirements of the size, shape, and polarity of the ligands that support the translocation and effective transport across the cell membrane via LAT1. This knowledge can be applied in future drug design to attain improved or targeted drug delivery and hence, successful LAT1-utilizing drugs with increased therapeutic effects.


Assuntos
Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Leucina/farmacologia , Relação Dose-Resposta a Droga , Humanos , Leucina/química , Células MCF-7 , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Células Tumorais Cultivadas
14.
Int J Pharm ; 596: 120300, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33540026

RESUMO

The prodrug approach targeting influx transporters has been extensively studied as a means of central nervous system drug delivery. Transporter and enzyme expression, localization and activity may contribute to significant species differences in preclinical studies. However, data about the possible species differences in the intra-brain distribution of transporter utilizing compounds is scarce. Here, we investigated the species differences in the intra-brain distribution of an L-type amino acid transporter 1 (LAT1)-utilizing L-lysine analogue of ketoprofen (KPF) (compound 1) and KPF itself by the whole tissue and brain microdialysis methods in mice, and compared the results to those previously reported in rats. Their pharmacodynamic responses in both species were assessed by measuring the brain prostaglandin E2 (PGE2) levels by LC-MS/MS. The intracellular delivery of compound 1 was much lower in mice than in rats. Higher target site concentrations of compound 1 and released KPF were reflected on a more pronounced effect on PGE2 levels in the rat brain. In conclusion, these results highlight the need for cross-species characterization of prodrug pharmacokinetics and pharmacodynamics in preclinical studies.


Assuntos
Barreira Hematoencefálica , Espectrometria de Massas em Tandem , Sistema y+L de Transporte de Aminoácidos , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Cromatografia Líquida , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Camundongos , Ratos , Especificidade da Espécie
15.
Pharm Res ; 37(5): 88, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32377929

RESUMO

Our growing understanding of membrane transporters and their substrate specificity has opened a new avenue in the field of targeted drug delivery. The L-type amino acid transporter 1 (LAT1) has been one of the most extensively investigated transporters for delivering drugs across biological barriers. The transporter is predominantly expressed in cerebral cortex, blood-brain barrier, blood-retina barrier, testis, placenta, bone marrow and several types of cancer. Its physiological function is to mediate Na+ and pH independent exchange of essential amino acids: leucine, phenylalanine, etc. Several drugs and prodrugs designed as LAT1 substrates have been developed to improve targeted delivery into the brain and cancer cells. Thus, the anti-parkinsonian drug, L-Dopa, the anti-cancer drug, melphalan and the anti-epileptic drug gabapentin, all used in clinical practice, utilize LAT1 to reach their target site. These examples provide supporting evidence for the utility of the LAT1-mediated targeted delivery of the (pro)drug. This review comprehensively summarizes recent advances in LAT1-mediated targeted drug delivery. In addition, the use of LAT1 is critically evaluated and limitations of the approach are discussed.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/uso terapêutico , Animais , Antineoplásicos/química , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Encéfalo , Sistema Nervoso Central/metabolismo , Portadores de Fármacos , Humanos , Tomografia por Emissão de Pósitrons
16.
Pharmaceutics ; 12(4)2020 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-32290494

RESUMO

In order to efficiently combat neuroinflammation, it is essential to deliver the anti-inflammatory drugs to their target sites in the brain. Pro-drugs utilizing the L-type amino acid transporter 1 (LAT1) can be transported across the blood-brain barrier (BBB) and the cellular barriers of the brain's parenchymal cells. In this study, we evaluated, for the first time, the efficacy of LAT1-utilizing prodrugs of ketoprofen (KPF) on cyclooxygenase (COX) enzymes in vitro and prostaglandin E2 production in vivo by using an enzymatic assay and liquid chromatography- tandem mass spectrometry method, respectively. Aliphatic amino acid-conjugated pro-drugs inhibited the peroxidase activity of COX in vitro in their intact form (85% inhibition, IC50 ≈ 1.1 µM and 79%, IC50 ≈ 2.3 µM), which was comparable to KPF (90%, IC50 ≈ 0.9). Thus, these compounds acted more as KPF derivatives rather than pro-drugs. In turn, aromatic amino acid-conjugated pro-drugs behaved differently. The ester pro-drug inhibited the COX peroxidase activity in vitro (90%, IC50 ≈ 0.6 µM) due to its bioconversion to KPF, whereas the amide pro-drug was inactive toward COX enzymes in vitro. However, the amide pro-drug released KPF in the mouse brain in sufficient and effective amounts measured as reduced PGE2 levels.

17.
Int J Pharm ; 571: 118714, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31610281

RESUMO

L-Type amino acid transporter 1 (LAT1)-utilizing prodrugs has been designed to improve drug delivery and targeting into the brain or cancer cells, since LAT1 is highly and selectively expressed on the blood-brain barrier as well as over-expressed in several types of cancer. However, less is known about the affinity of these compounds for the secondary transport mechanisms. The aim of this study was to evaluate interactions of nine LAT1-utilizing prodrugs with organic anion transporting polypeptides (OATPs). These results showed that LAT1-utilizing prodrugs can indeed, interact with OATPs, although it was considered to be minor compared to LAT1; the Km values of these compounds for LAT1 were 1-7 µM while the ones for OATPs were 73-406 µM. Moreover, utilization of LAT1 was 2-12-times more effective (compared as intrinsic clearance) than of OATPs, whose utilization seemed to be less significant at therapeutically used concentrations. According to these results, affinity for OATPs raised from the structural features of the parent drug moiety regardless of the structure of the promoiety. In conclusion, the present study shows that it is important to evaluate secondary transport mechanisms carefully, since they may have a role in pharmacokinetics of LAT1-utilizing prodrugs if LAT1 becomes saturated or un-functional.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Pró-Fármacos/farmacologia , Humanos , Células MCF-7 , Pró-Fármacos/química , Ligação Proteica
18.
Sci Rep ; 9(1): 12860, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31492955

RESUMO

L-Type Amino Acid Transporter 1 (LAT1/Lat1) is responsible for carrying large, neutral L-amino acids as well as several drugs and prodrugs across the blood-brain barrier (BBB). However, the BBB is not the only barrier that hinders drugs acting effectively within the brain; the brain parenchymal cell membranes represent a secondary barrier for the drugs with intracellular target sites. In this study, expression and function of Lat1 was quantified in mouse primary neuron, astrocyte and immortalized microglia (BV2) cultures. Moreover, ability of Lat1 to carry prodrugs inside these brain cells was evaluated. The results showed that Lat1 was localized at the similar level in all studied cells (3.07 ± 0.92-3.77 ± 0.91 fmol/µg protein). The transporter was also functional in all three cell types, astrocytes having the highest transport capacity and affinity for the LAT1/Lat1-substrate, [14C]-L-leucine, followed by neurons and microglia. The designed prodrugs (1-6) were able to utilize Lat1 for their cellular uptake and it was mainly much higher than the one of their parent drugs. Interestingly, improved cellular uptake was also achieved in cells representing Alzheimer's Disease phenotype. Therefore, improved delivery and intra-brain targeting of drugs can be attained by utilizing LAT1/Lat1 and prodrug approach.


Assuntos
Astrócitos/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Microglia/metabolismo , Neurônios/metabolismo , Pró-Fármacos/administração & dosagem , Doença de Alzheimer/metabolismo , Animais , Animais Recém-Nascidos , Astrócitos/citologia , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Encéfalo/citologia , Encéfalo/metabolismo , Linhagem Celular , Células Cultivadas , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/citologia , Neurônios/citologia , Pró-Fármacos/química , Pró-Fármacos/farmacocinética
19.
Mol Pharm ; 16(7): 3261-3274, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31180686

RESUMO

l-Type amino acid transporter 1 (LAT1), selectively expressed at the blood-brain barrier (BBB) and brain parenchymal cells, mediates brain delivery of drugs and prodrugs such as l-dopa and gabapentin. Although knowledge about BBB transport of LAT1-utilizing prodrugs is available, there is a lack of quantitative information about brain intracellular delivery and influence of prodrugs on the transporter's physiological state. We studied the LAT1-mediated intrabrain distribution of a recently developed prodrug of the cyclooxygenase inhibitor ketoprofen as well as its impact on transporter protein expression and function (i.e., amino acid exchange) using brain slice method in mice and rats. The intrabrain distribution of the prodrug was 16 times higher than that of ketoprofen. LAT1 involvement in brain cellular barrier uptake of the prodrug was confirmed, reflected by a higher unbound brain intracellular compared to brain extracellular fluid concentration. The prodrug did not alter LAT1 protein expression and amino acid exchange. Integration of derived parameters with previously performed in vivo pharmacokinetic study using the Combinatory Mapping Approach allowed to estimate the brain extra- and intracellular levels of unbound ketoprofen, prodrug, and released parent drug. The overall efficiency of plasma to brain intracellular delivery of prodrug-released ketoprofen was 11 times higher than after ketoprofen dosing. In summary, this study provides quantitative information supporting the use of the LAT1-mediated prodrug approach for enhanced brain delivery of drugs with intracellular targets.


Assuntos
Sistema y+L de Transporte de Aminoácidos/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Descoberta de Drogas/métodos , Cetoprofeno/farmacocinética , Pró-Fármacos/farmacocinética , Sistema y+L de Transporte de Aminoácidos/antagonistas & inibidores , Aminoácidos/metabolismo , Animais , Transporte Biológico Ativo , Liberação Controlada de Fármacos , Imidazóis/farmacologia , Cetoprofeno/administração & dosagem , Cetoprofeno/análogos & derivados , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pró-Fármacos/administração & dosagem , Piridinas/farmacologia , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
20.
eNeuro ; 6(1)2019.
Artigo em Inglês | MEDLINE | ID: mdl-30838323

RESUMO

Parkinson's disease (PD) is characterized by the gradual degeneration of dopaminergic neurons in the substantia nigra, leading to striatal dopamine depletion. A partial unilateral striatal 6-hydroxydopamine (6-OHDA) lesion causes 40-60% dopamine depletion in the lesioned rat striatum, modeling the early stage of PD. In this study, we explored the connectivity between the brain regions in partially 6-OHDA lesioned male Wistar rats under urethane anesthesia using functional magnetic resonance imaging (fMRI) at 5 weeks after the 6-OHDA infusion. Under urethane anesthesia, the brain fluctuates between the two states, resembling rapid eye movement (REM) and non-REM sleep states. We observed clear urethane-induced sleep-like states in 8/19 lesioned animals and 8/18 control animals. 6-OHDA lesioned animals exhibited significantly lower functional connectivity between the brain regions. However, we observed these differences only during the REM-like sleep state, suggesting the involvement of the nigrostriatal dopaminergic pathway in REM sleep regulation. Corticocortical and corticostriatal connections were decreased in both hemispheres, reflecting the global effect of the lesion. Overall, this study describes a promising model to study PD-related sleep disorders in rats using fMRI.


Assuntos
Anestésicos Intravenosos/farmacologia , Encéfalo/efeitos dos fármacos , Transtornos Parkinsonianos/fisiopatologia , Sono/efeitos dos fármacos , Uretana/farmacologia , Anestesia , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Mapeamento Encefálico , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiopatologia , Oxidopamina , Transtornos Parkinsonianos/diagnóstico por imagem , Ratos Wistar , Descanso , Sono/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...