Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 1464, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446821

RESUMO

In temperate regions, winter is characterized by cold temperatures and low food availability. Heterothermic animals can bridge this period by entering a state of torpor characterized by decreased body temperature and reduced metabolic rate. Hibernation site choice is crucial since temperature conditions in the hibernaculum will impact torpor. We analysed temperature-dependent hibernation site use of Barbastella barbastellus. Bats and temperature were monitored in an underground system (1999-2019) and standalone bunkers (2007-2019) in Western Poland. During the winter of 2017-2018 we analysed the thermal variability of the hibernacula. Seasonal variation is higher in bunkers and thus temperatures get colder in winter than in the underground system. On the other hand, short-term variability (thermal variability index) in the bunkers was lower than in the underground system. This makes bunkers a more stable environment to hibernate for cold dwelling bats in warm winters, when temperatures in the bunkers do not get below freezing. Bats use both the warm underground system and the colder bunkers. During the last decade, a continuous series of warm winters occurred and the population of barbastelle bats partly moved from the underground system to the bunkers. These present temperature increases broadened the range of potential hibernation sites for barbastelles. Our study indicates that long-term trends, seasonal variation and short-term variability in temperatures are all important and should be analysed to investigate hibernaculum use by bats. Our study shows that small hibernation sites may become more important in the future.


Assuntos
Quirópteros/fisiologia , Hibernação/fisiologia , Torpor/fisiologia , Animais , Temperatura Corporal , Temperatura Baixa , Feminino , Masculino , Polônia , Estações do Ano , Temperatura
2.
Mamm Rev ; 51(2): 272-292, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33230363

RESUMO

It has been a long time since the world has experienced a pandemic with such a rapid devastating impact as the current COVID-19 pandemic. The causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is unusual in that it appears capable of infecting many different mammal species. As a significant proportion of people worldwide are infected with SARS-CoV-2 and may spread the infection unknowingly before symptoms occur or without any symptoms ever occurring, there is a non-negligible risk of humans spreading SARS-CoV-2 to wildlife, in particular to wild non-human mammals. Because of SARS-CoV-2's apparent evolutionary origins in bats and reports of humans transmitting the virus to pets and zoo animals, regulations for the prevention of human-to-animal transmission have so far focused mostly on these animal groups. We summarise recent studies and reports that show that a wide range of distantly related mammals are likely to be susceptible to SARS-CoV-2, and that susceptibility or resistance to the virus is, in general, not predictable, or only predictable to some extent, from phylogenetic proximity to known susceptible or resistant hosts. In the absence of solid evidence on the susceptibility and resistance to SARS-CoV-2 for each of the >6500 mammal species, we argue that sanitary precautions should be taken by humans interacting with any other mammal species in the wild. Preventing human-to-wildlife SARS-CoV-2 transmission is important to protect these animals (some of which are classed as threatened) from disease, but also to avoid establishment of novel SARS-CoV-2 reservoirs in wild mammals. The risk of repeated re-infection of humans from such a wildlife reservoir could severely hamper SARS-CoV-2 control efforts. Activities during which direct or indirect interaction with wild mammals may occur include wildlife research, conservation activities, forestry work, pest control, management of feral populations, ecological consultancy work, management of protected areas and natural environments, wildlife tourism and wildlife rehabilitation in animal shelters. During such activities, we recommend sanitary precautions, such as physical distancing, wearing face masks and gloves, and frequent decontamination, which are very similar to regulations currently imposed to prevent transmission among humans. We further recommend active surveillance of domestic and feral animals that could act as SARS-CoV-2 intermediate hosts between humans and wild mammals.

3.
BMC Ecol ; 14: 20, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24998243

RESUMO

BACKGROUND: Gene flow and adaptive divergence are key aspects of metapopulation dynamics and ecological speciation. Long-distance dispersal is hard to detect and few studies estimate dispersal in combination with adaptive divergence. The aim of this study was to investigate effective long-distance dispersal and adaptive divergence in the fen orchid (Liparis loeselii (L.) Rich.). We used amplified fragment length polymorphism (AFLP)-based assignment tests to quantify effective long-distance dispersal at two different regions in Northwest Europe. In addition, genomic divergence between fen orchid populations occupying two distinguishable habitats, wet dune slacks and alkaline fens, was investigated by a genome scan approach at different spatial scales (continental, landscape and regional) and based on 451 AFLP loci. RESULTS: We expected that different habitats would contribute to strong divergence and restricted gene flow resulting in isolation-by-adaptation. Instead, we found remarkably high levels of effective long-distance seed dispersal and low levels of adaptive divergence. At least 15% of the assigned individuals likely originated from among-population dispersal events with dispersal distances up to 220 km. Six (1.3%) 'outlier' loci, potentially reflecting local adaptation to habitat-type, were identified with high statistical support. Of these, only one (0.22%) was a replicated outlier in multiple independent dune-fen population comparisons and thus possibly reflecting truly parallel divergence. Signals of adaptation in response to habitat type were most evident at the scale of individual populations. CONCLUSIONS: The findings of this study suggest that the homogenizing effect of effective long-distance seed dispersal may overwhelm divergent selection associated to habitat type in fen orchids in Northwest Europe.


Assuntos
Ecótipo , Fluxo Gênico , Variação Genética , Orchidaceae/genética , Dispersão de Sementes , Adaptação Fisiológica/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Teorema de Bayes , DNA de Plantas/genética , Europa (Continente) , Funções Verossimilhança , Análise Espacial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...