Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Virol ; 67(1): 99-108, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36950890

RESUMO

The major protective immune response against viruses is the production of type I and III interferons (IFNs). IFNs induce the expression of hundreds of IFN-stimulated genes (ISGs) that block viral replication and further viral spread. In this report, we analyzed the expression of IFNs and some ISGs (MxA, PKR, OAS-1, IFIT-1, RIG-1, MDA5, SOCS-1) in alveolar epithelial cells (A549) in response to infection with influenza A viruses (A/California/07/09 (H1N1pdm); A/Texas/50/12 (H3N2)); influenza B virus (B/Phuket/3073/13); adenovirus type 5 and 6; or respiratory syncytial virus (strain A2). Influenza B virus had the ability to most rapidly induce IFNs and ISGs as well as to stimulate excessive IFN-α, IFN-ß and IFN-λ secretion. It seems curious that IAV H1N1pdm did not induce IFN-λ secretion, but enhanced type I IFN and interleukin (IL)-6 production. We emphasized the importance of the negative regulation of virus-triggered signaling and cellular IFN response. We showed a decrease in IFNLR1 mRNA in the case of IBV infection. The attenuation of SOCS-1 expression in IAV H1N1pdm can be considered as the inability of the system to restore the immune status. Presumably, the lack of negative feedback loop regulation of proinflammatory immune response may be a factor contributing to the particular pathogenicity of several strains of influenza. Keywords: lambda interferons; MxA; influenza; respiratory syncytial virus; A549 cells.


Assuntos
Influenza Humana , Interferon lambda , Humanos , Influenza Humana/genética , Vírus da Influenza A Subtipo H3N2 , Interferons/genética , Interferons/farmacologia , Interferon-alfa/genética , Expressão Gênica
2.
Sensors (Basel) ; 23(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36850595

RESUMO

This paper considers the evaluation of uncertainty of quantitative gel electrophoresis. To date, such uncertainty estimation presented in the literature are based on the multiple measurements performed for assessing the intra- and interlaboratory reproducibility using standard samples. This paper shows how to estimate the uncertainty in cases where we cannot study scattering components of the results. The first point is dedicated to a case where we have standard samples (the direct expressions are shown). The second point considers the situation when standard samples are absent (the algorithm for estimating the lower bound for uncertainty is discussed). The role of the data processing algorithm is demonstrated.


Assuntos
Ácidos Nucleicos , Reprodutibilidade dos Testes , Incerteza , Eletroforese em Gel de Ágar , Algoritmos
3.
J Immunol Methods ; 478: 112712, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31783022

RESUMO

Upper respiratory tract infections are the world's most common infectious disease. The etiologic agents behind upper respiratory tract infections (URTIs) are, in fact, a diverse set of pathogens such as influenza, parainfluenza, adenovirus, rhinovirus, and others. More than 200 pathogens are known to be involved. Differential diagnosis of viral infections is sometimes complicated by their diversity or similarity of clinical presentation. This work is devoted to the development of a method which enables simultaneous detection of six common viral URTI pathogens: IAV; IBV; RSV; hAdV; hPIV2; and hPIV3. Antibody microarray technology is utilized to accomplish the analysis. In preparation for protein microchip creation, we produced, characterized, and selected approximately 50 monoclonal antibodies; for each of the aforementioned pathogens, an optimal monoclonal antibody pair was selected. A protein microchip was created, and its core working conditions were optimized. With a balance between convenience and maximal assay sensitivity in mind, a one-step analysis approach was developed for accomplishing the ELISA-like "sandwich" interaction on the manufactured microchip (antibody microarray). Reference viral strains were used to establish the lower limits of detection (LoD) for the assay. For IAV, the LoD was 0.25 ng/ml total viral protein. For other viruses, the LoD ranged from 1 to 2 ng/ml total protein. These sensitivity limits are slightly better than those of standard ELISA, but inferior to those of PCR. Overall, we believe that the developed microchip is a good alternative to existing methods, allowing relatively quick (overnight), inexpensive, simultaneous screening of several pathogens. The design of the antibody microarray is conducive to further development, and the panel of analyzed pathogens can be expanded to include approximately 50 members.


Assuntos
Antígenos Virais/isolamento & purificação , Análise Serial de Proteínas/métodos , Infecções Respiratórias/diagnóstico , Proteínas Virais/isolamento & purificação , Viroses/diagnóstico , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/isolamento & purificação , Antígenos Virais/imunologia , Linhagem Celular , DNA Viral/isolamento & purificação , Diagnóstico Diferencial , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Hibridomas , Limite de Detecção , Camundongos , Reação em Cadeia da Polimerase , RNA Viral/isolamento & purificação , Infecções Respiratórias/imunologia , Infecções Respiratórias/virologia , Proteínas Virais/imunologia , Viroses/imunologia , Viroses/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...