Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Genes (Basel) ; 14(3)2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36980882

RESUMO

Trypanosomatids are single-cell eukaryotic parasites. Unlike higher eukaryotes, they control gene expression post-transcriptionally and not at the level of transcription initiation. This involves all known cellular RNA circuits, from mRNA processing to mRNA decay, to translation, in addition to a large panel of RNA-interacting proteins that modulate mRNA abundance. However, other forms of gene regulation, for example by lncRNAs, cannot be excluded. LncRNAs are poorly studied in trypanosomatids, with only a single lncRNA characterized to date. Furthermore, it is not clear whether the complete inventory of trypanosomatid lncRNAs is known, because of the inherent cDNA-recoding and DNA-amplification limitations of short-read RNA sequencing. Here, we overcome these limitations by using long-read direct RNA sequencing (DRS) on nanopore arrays. We analyze the native RNA pool of the two main lifecycle stages of the African trypanosome Trypanosoma brucei, with a special emphasis on the inventory of lncRNAs. We identify 207 previously unknown lncRNAs, 32 of which are stage-specifically expressed. We also present insights into the complexity of the T. brucei transcriptome, including alternative transcriptional start and stop sites and potential transcript isoforms, to provide a bias-free understanding of the intricate RNA landscape in T. brucei.


Assuntos
Nanoporos , RNA Longo não Codificante , Trypanosoma brucei brucei , Transcriptoma/genética , Trypanosoma brucei brucei/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , Análise de Sequência de RNA
2.
Front Res Metr Anal ; 7: 988544, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36277734

RESUMO

Over the past decade, Citizen Science (CS) has shown great potential to transform the power of the crowd into knowledge of societal value. Many projects and initiatives have produced high quality scientific results by mobilizing peoples' interest in science to volunteer for the public good. Few studies have attempted to map citizen science as a field, and assess its impact on science, society and ways to sustain its future practice. To better understand CS activities and characteristics, CS Track employs an analytics and analysis framework for monitoring the citizen science landscape. Within this framework, CS Track collates and processes information from project websites, platforms and social media and generates insights on key issues of concern to the CS community, such as participation patterns or impact on science learning. In this paper, we present the operationalization of the CS Track framework and its three-level analysis approach (micro-meso-macro) for applying analytics techniques to external data sources. We present three case studies investigating the CS landscape using these analytical levels and discuss the strengths and limitations of combining web-analytics with quantitative and qualitative research methods. This framework aims to complement existing methods for evaluating CS, address gaps in current observations of the citizen science landscape and integrate findings from multiple studies and methodologies. Through this work, CS Track intends to contribute to the creation of a measurement and evaluation scheme for CS and improve our understanding about the potential of analytics for the evaluation of CS.

3.
Chembiochem ; 23(20): e202200410, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36040754

RESUMO

Trypanosoma brucei is the causal infectious agent of African trypanosomiasis in humans and Nagana in livestock. Both diseases are currently treated with a small number of chemotherapeutics, which are hampered by a variety of limitations reaching from efficacy and toxicity complications to drug-resistance problems. Here, we explore the forward design of a new class of synthetic trypanocides based on nanostructured, core-shell DNA-lipid particles. In aqueous solution, the particles self-assemble into micelle-type structures consisting of a solvent-exposed, hydrophilic DNA shell and a hydrophobic lipid core. DNA-lipid nanoparticles have membrane-adhesive qualities and can permeabilize lipid membranes. We report the synthesis of DNA-cholesterol nanoparticles, which specifically subvert the membrane integrity of the T. brucei lysosome, killing the parasite with nanomolar potencies. Furthermore, we provide an example of the programmability of the nanoparticles. By functionalizing the DNA shell with a spliced leader (SL)-RNA-specific DNAzyme, we target a second trypanosome-specific pathway (dual-target approach). The DNAzyme provides a backup to counteract the recovery of compromised parasites, which reduces the risk of developing drug resistance.


Assuntos
DNA Catalítico , Nanopartículas , Tripanossomicidas , Trypanosoma brucei brucei , Humanos , Colesterol/metabolismo , DNA/metabolismo , DNA Catalítico/metabolismo , Lipídeos , Micelas , RNA Líder para Processamento/metabolismo , Solventes/metabolismo , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/parasitologia
4.
Front Robot AI ; 8: 728961, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34746243

RESUMO

Human-Robot Collaboration (HRC) has the potential for a paradigm shift in industrial production by complementing the strengths of industrial robots with human staff. However, exploring these scenarios in physical experimental settings is costly and difficult, e.g., due to safety considerations. We present a virtual reality application that allows the exploration of HRC work arrangements with autonomous robots and their effect on human behavior. Prior experimental studies conducted using this application demonstrated the benefits of augmenting an autonomous robot arm with communication channels on subjective aspects such as perceived stress. Motivated by current safety regulations that hinder HRC to expand its full potential, we explored the effects of the augmented communication on objective measures (collision rate and produced goods) within a virtual sandbox application. Explored through a safe and replicable setup, the goal was to determine whether communication channels that provide guidance and explanation on the robot can help mitigate safety hazards without interfering with the production effectiveness of both parties. This is based on the theoretical foundation that communication channels enable the robot to explain its action, helps the human collaboration partner to comprehend the current state of the shared task better, and react accordingly. Focused on the optimization of production output, reduced collision rate, and increased perception of safety, a between-subjects experimental study with two conditions (augmented communication vs non-augmented) was conducted. The results revealed a statistically significant difference in terms of production quantity output and collisions with the robot, favoring the augmented conditions. Additional statistically significant differences regarding self-reported perceived safety were found. The results of this study provide an entry point for future research regarding the augmentation of industrial robots with communication channels for safety purposes.

5.
Bio Protoc ; 11(5): e3935, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33796609

RESUMO

Gene expression within the mitochondria of African trypanosomes and other protozoan organisms relies on a nucleotide-specific RNA-editing reaction. In the process exclusively uridine (U)-nucleotides are site-specifically inserted into and deleted from sequence-deficient primary transcripts to convert them into translatable mRNAs. The reaction is catalyzed by a 0.8 MDa multiprotein complex termed the editosome. Here we describe an improved in vitro test to quantitatively explore the catalytic activity of the editosome. The assay uses synthetic, fluorophore-derivatized oligoribonucleotides as editing substrates, which enable the automated electrophoretic separation of the reaction products by capillary electrophoresis (CE) coupled to laser-induced fluorescence (LIF) detection systems. The assay is robust, it requires only nanogram amounts of materials and by using multicapillary CE/LIF-instruments it can be executed in a highly parallel layout. Further improvements include the usage of phosphorothioate-modified and thus RNase-resistant substrate RNAs as well as multiplex-type fluorophore labeling strategies to monitor the U-insertion and U-deletion reaction simultaneously. The assay is useful for investigating the mechanism and enzymology of the editosome. However, it can also be executed in high-throughput to screen for RNA editing-specific inhibitors. Graphic abstract: Characteristics of the fluorescence-based in vitro U-insertion/U-deletion RNA-editing (FIDE) assay.

6.
Nucleic Acids Res ; 48(17): e99, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32756897

RESUMO

Mitochondrial gene expression in African trypanosomes and other trypanosomatid pathogens requires a U-nucleotide specific insertion/deletion-type RNA-editing reaction. The process is catalyzed by a macromolecular protein complex known as the editosome. Editosomes are restricted to the trypanosomatid clade and since editing is essential for the parasites, the protein complex represents a near perfect target for drug intervention strategies. Here, we report the development of an improved in vitro assay to monitor editosome function. The test system utilizes fluorophore-labeled substrate RNAs to analyze the processing reaction by automated, high-throughput capillary electrophoresis (CE) in combination with a laser-induced fluorescence (LIF) readout. We optimized the assay for high-throughput screening (HTS)-experiments and devised a multiplex fluorophore-labeling regime to scrutinize the U-insertion/U-deletion reaction simultaneously. The assay is robust, it requires only nanogram amounts of materials and it meets all performance criteria for HTS-methods. As such the test system should be helpful in the search for trypanosome-specific pharmaceuticals.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Edição de RNA , Trypanosoma brucei brucei/genética , Fluoresceína/química , Corantes Fluorescentes/química , Genoma Mitocondrial , Reação em Cadeia da Polimerase Multiplex/métodos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , RNA Guia de Cinetoplastídeos/química , RNA Guia de Cinetoplastídeos/genética , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Uridina Trifosfato/química
7.
Trends Parasitol ; 36(4): 337-355, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32191849

RESUMO

Trypanosoma brucei spp. cause African human and animal trypanosomiasis, a burden on health and economy in Africa. These hemoflagellates are distinguished by a kinetoplast nucleoid containing mitochondrial DNAs of two kinds: maxicircles encoding ribosomal RNAs (rRNAs) and proteins and minicircles bearing guide RNAs (gRNAs) for mRNA editing. All RNAs are produced by a phage-type RNA polymerase as 3' extended precursors, which undergo exonucleolytic trimming. Most pre-mRNAs proceed through 3' adenylation, uridine insertion/deletion editing, and 3' A/U-tailing. The rRNAs and gRNAs are 3' uridylated. Historically, RNA editing has attracted major research effort, and recently essential pre- and postediting processing events have been discovered. Here, we classify the key players that transform primary transcripts into mature molecules and regulate their function and turnover.


Assuntos
Edição de RNA/fisiologia , RNA Mitocondrial/metabolismo , RNA de Protozoário/metabolismo , Trypanosoma brucei brucei/metabolismo , Animais , RNA Mitocondrial/genética , RNA de Protozoário/genética , Trypanosoma brucei brucei/genética
8.
Methods Mol Biol ; 2106: 161-178, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31889257

RESUMO

Mitochondrial pre-mRNAs in African trypanosomes adopt intricately folded, highly stable 2D and 3D structures. The RNA molecules are substrates of a U-nucleotide-specific insertion/deletion-type RNA editing reaction, which is catalyzed by a 0.8 MDa protein complex known as the editosome. RNA binding to the editosome is followed by a chaperone-mediated RNA remodeling reaction. The reaction increases the dynamic of specifically U-nucleotides to lower their base-pairing probability and as a consequence generates a simplified RNA folding landscape that is critical for the progression of the editing reaction cycle. Here we describe a chemical mapping method to quantitatively monitor the chaperone-driven structural changes of pre-edited mRNAs upon editosome binding. The method is known as selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE). SHAPE is based on the differential electrophilic modification of ribose 2'-hydroxyl groups in structurally constraint (double-stranded) versus structurally unconstrained (single-stranded) nucleotides. Electrophilic anhydrides such as 1-methyl-7-nitroisatoic anhydride are used as probing reagents, and the ribose 2'-modified nucleotides are mapped as abortive cDNA synthesis products. As a result, SHAPE allows the identification of all single-stranded and base-paired regions in a given RNA, and the data are used to compute experimentally derived RNA 2D structures. A side-by-side comparison of the RNA 2D folds in the pre- and post-chaperone states finally maps the chaperone-induced dynamic of the different pre-mRNAs with single-nucleotide resolution.


Assuntos
Chaperonas Moleculares/metabolismo , Técnicas de Sonda Molecular , Proteínas de Protozoários/metabolismo , Edição de RNA , Dobramento de RNA , RNA Mitocondrial/química , RNA de Protozoário/química , RNA Mitocondrial/metabolismo , RNA de Protozoário/metabolismo , Análise de Sequência de RNA/métodos , Trypanosoma brucei brucei
9.
ACS Synth Biol ; 8(9): 2163-2173, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31393707

RESUMO

RNA-based devices controlling gene expression bear great promise for synthetic biology, as they offer many advantages such as short response times and light metabolic burden compared to protein-circuits. However, little work has been done regarding their integration to multilevel regulated circuits. In this work, we combined a variety of small transcriptional activator RNAs (STARs) and toehold switches to build highly effective AND-gates. To characterize the components and their dynamic range, we used an Escherichia coli (E. coli) cell-free transcription-translation (TX-TL) system dispensed via nanoliter droplets. We analyzed a prototype gate in vitro as well as in silico, employing parametrized ordinary differential equations (ODEs), for which parameters were inferred via parallel tempering, a Markov chain Monte Carlo (MCMC) method. On the basis of this analysis, we created nine additional AND-gates and tested them in vitro. The functionality of the gates was found to be highly dependent on the concentration of the activating RNA for either the STAR or the toehold switch. All gates were successfully implemented in vivo, offering a dynamic range comparable to the level of protein circuits. This study shows the potential of a rapid prototyping approach for RNA circuit design, using cell-free systems in combination with a model prediction.


Assuntos
Escherichia coli/metabolismo , RNA/metabolismo , Biologia Sintética/métodos , Sistema Livre de Células , Escherichia coli/genética , Modelos Teóricos , Método de Monte Carlo , Plasmídeos/genética , Plasmídeos/metabolismo
10.
Anal Chem ; 91(5): 3484-3491, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30715859

RESUMO

We present a method allowing to produce monodisperse droplets with volumes in the femtoliter range in a microchannel on demand. The method utilizes pulsed electric fields deforming the interface between an aqueous and an oil phase and pinching off droplets. Water and xanthan gum solutions are considered as disperse-phase liquids, and it is shown that the method can be applied even to solutions with a zero-shear rate viscosity more than 104-times higher than that of water. The droplet formation regimes are explored by systematically varying the pulse amplitude and duration as well as the salt concentration. The dependence of the process on the pulse amplitude can be utilized to tune the droplet size. To demonstrate the applicability of the electric-field-driven droplet generator, it is shown that the droplets can be used as versatile biological reaction compartments. It is proven that droplets containing a cell-free transcription-translation system execute gene transcription and protein biosynthesis in a timely and programmable fashion. Moreover, it is verified that biomolecules inside the aqueous droplets such as small RNAs can be diffusionally activated from the outside to induce a ligand-driven biochemical switch.


Assuntos
Técnicas Analíticas Microfluídicas , Polissacarídeos Bacterianos/metabolismo , Proteínas/metabolismo , RNA/metabolismo , Água/metabolismo , Tamanho da Partícula , Polissacarídeos Bacterianos/química , Proteínas/análise , RNA/análise , Propriedades de Superfície , Água/química
11.
Chembiochem ; 20(10): 1251-1255, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30609206

RESUMO

Humans have evolved a natural immunity against Trypanosoma brucei infections, which is executed by two serum (lipo)protein complexes known as trypanolytic factors (TLF). The active TLF ingredient is the primate-specific apolipoprotein L1 (APOL1). The protein has a pore-forming activity that kills parasites by lysosomal and mitochondrial membrane fenestration. Of the many trypanosome subspecies, only two are able to counteract the activity of APOL1; this illustrates its evolutionarily optimized design and trypanocidal potency. Herein, we ask whether a synthetic (syn) TLF can be synthesized by using the design principles of the natural TLF complexes but with different chemical building blocks. We demonstrate the stepwise development of triterpenoid-peptide conjugates, in which the triterpenoids act as a cell-binding, uptake and lysosomal-transport modules and the synthetic peptide GALA acts as a pH-sensitive, pore-forming lysolytic toxin. As designed, the conjugate kills infective-stage African trypanosomes through lysosomal lysis thus demonstrating a proof-of-principle for the bioinspired, forward-design of a synTLF.


Assuntos
Lisossomos/efeitos dos fármacos , Peptídeos/farmacologia , Triterpenos/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Sequência de Aminoácidos , Aptâmeros de Nucleotídeos/síntese química , Aptâmeros de Nucleotídeos/farmacologia , Peptídeos/síntese química , Peptídeos/química , Estudo de Prova de Conceito , RNA/síntese química , RNA/farmacologia , Triterpenos/síntese química , Tripanossomicidas/síntese química
12.
Nucleic Acids Res ; 46(19): 10353-10367, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30060205

RESUMO

Sequence-deficient mitochondrial pre-mRNAs in African trypanosomes are substrates of a U-nucleotide-specific RNA editing reaction to generate translation-competent mRNAs. The reaction is catalyzed by a macromolecular protein complex termed the editosome. Editosomes execute RNA-chaperone activity to overcome the highly folded nature of pre-edited substrate mRNAs. The molecular basis for this activity is unknown. Here we test five of the OB-fold proteins of the Trypanosoma brucei editosome as candidates. We demonstrate that all proteins execute RNA-chaperone activity albeit to different degrees. We further show that the activities correlate to the surface areas of the proteins and we map the protein-induced RNA-structure changes using SHAPE-chemical probing. To provide a structural context for our findings we calculate a coarse-grained model of the editosome. The model has a shell-like structure: Structurally well-defined protein domains are separated from an outer shell of intrinsically disordered protein domains, which suggests a surface-driven mechanism for the chaperone activity.


Assuntos
Chaperonas Moleculares/genética , Complexos Multiproteicos/genética , RNA Mensageiro/genética , Trypanosoma brucei brucei/genética , Chaperonas Moleculares/química , Complexos Multiproteicos/química , Dobramento de Proteína , Edição de RNA/genética , Precursores de RNA/química , Precursores de RNA/genética , RNA Mensageiro/química , Trypanosoma brucei brucei/química , Uridina/química , Uridina/genética
13.
Comput Soc Netw ; 4(1): 3, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29266128

RESUMO

BACKGROUND: Influential actors detection in social media such as Twitter or Facebook can play a major role in gathering opinions on particular topics, improving the marketing efficiency, predicting the trends, etc. PROPOSED METHODS: This work aims to extend our formally defined T measure to present a new measure aiming to recognize the actor's influence by the strength of attracting new important actors into a networked community. Therefore, we propose a model of the actor's influence based on the attractiveness of the actor in relation to the number of other attractors with whom he/she has established connections over time. RESULTS AND CONCLUSIONS: Using an empirically collected social network for the underlying graph, we have applied the above-mentioned measure of influence in order to determine optimal seeds in a simulation of influence maximization. We study our extended measure in the context of information diffusion because this measure is based on a model of actors who attract others to be active members in a community. This corresponds to the idea of the IC simulation model which is used to identify the most important spreaders in a set of actors.

14.
J Nucleic Acids ; 2017: 6067345, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28698807

RESUMO

Mitochondrial transcript maturation in African trypanosomes requires RNA editing to convert sequence-deficient pre-mRNAs into translatable mRNAs. The different pre-mRNAs have been shown to adopt highly stable 2D folds; however, it is not known whether these structures resemble the in vivo folds given the extreme "crowding" conditions within the mitochondrion. Here, we analyze the effects of macromolecular crowding on the structure of the mitochondrial RPS12 pre-mRNA. We use high molecular mass polyethylene glycol as a macromolecular cosolute and monitor the structure of the RNA globally and with nucleotide resolution. We demonstrate that crowding has no impact on the 2D fold and we conclude that the MFE structure in dilute solvent conditions represents a good proxy for the folding of the pre-mRNA in its mitochondrial solvent context.

15.
Sci Rep ; 6: 29810, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27436151

RESUMO

Mitochondrial transcript maturation in African trypanosomes requires a U-nucleotide specific RNA editing reaction. In its most extreme form hundreds of U's are inserted into and deleted from primary transcripts to generate functional mRNAs. Unfortunately, both origin and biological role of the process have remained enigmatic. Here we report a so far unrecognized structural feature of pre-edited mRNAs. We demonstrate that the cryptic pre-mRNAs contain numerous clustered G-nt, which fold into G-quadruplex (GQ) structures. We identified 27 GQ's in the different pre-mRNAs and demonstrate a positive correlation between the steady state abundance of guide (g)RNAs and the sequence position of GQ-elements. We postulate that the driving force for selecting G-rich sequences lies in the formation of DNA/RNA hybrid G-quadruplex (HQ) structures between the pre-edited transcripts and the non-template strands of mitochondrial DNA. HQ's are transcription termination/replication initiation sites and thus guarantee an unperturbed replication of the mt-genome. This is of special importance in the insect-stage of the parasite. In the transcription-on state, the identified GQ's require editing as a GQ-resolving activity indicating a link between replication, transcription and RNA editing. We propose that the different processes have coevolved and suggest the parasite life-cycle and the single mitochondrion as evolutionary driving forces.


Assuntos
Quadruplex G , Edição de RNA , Precursores de RNA/química , RNA de Protozoário/química , Trypanosoma/genética , Sequência de Bases , Replicação do DNA , Evolução Molecular , Regulação da Expressão Gênica , Mitocôndrias/genética , Mitocôndrias/metabolismo , Modelos Moleculares , Precursores de RNA/genética , RNA de Protozoário/genética , Trypanosoma/classificação , Trypanosoma brucei brucei/genética
16.
Autoimmun Rev ; 15(6): 577-84, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26925759

RESUMO

A newly-described first-line immune defence mechanism of neutrophils is the release of neutrophil extracellular traps (NETs). Immune complexes (ICxs) induce low level NET release. As such, the in vitro quantification of NETs is challenging with current methodologies. In order to investigate the role of NET release in ICx-mediated autoimmune diseases, we developed a highly sensitive and automated method for quantification of NETs. After labelling human neutrophils with PKH26 and extracellular DNA with Sytox green, cells are fixed and automatically imaged with 3-dimensional confocal laser scanning microscopy (3D-CLSM). NET release is then quantified with digital image analysis whereby the NET amount (Sytox green area) is corrected for the number of imaged neutrophils (PKH26 area). A high sensitivity of the assay is achieved by a) significantly augmenting the area of the well imaged (11%) as compared to conventional assays (0.5%) and b) using a 3D imaging technique for optimal capture of NETs, which are topologically superimposed on neutrophils. In this assay, we confirmed low levels of NET release upon human ICx stimulation which were positive for citrullinated histones and neutrophil elastase. In contrast to PMA-induced NET release, ICx-induced NET release was unchanged when co-incubated with diphenyleneiodonium (DPI). We were able to quantify NET release upon stimulation with serum from RA and SLE patients, which was not observed with normal human serum. To our knowledge, this is the first semi-automated assay capable of sensitive detection and quantification of NET release at a low threshold by using 3D CLSM. The assay is applicable in a high-throughput manner and allows the in vitro analysis of NET release in ICx-mediated autoimmune diseases.


Assuntos
Complexo Antígeno-Anticorpo/imunologia , DNA/imunologia , Armadilhas Extracelulares/imunologia , Neutrófilos/imunologia , Doenças Autoimunes , Humanos , Espécies Reativas de Oxigênio
17.
Sci Rep ; 6: 19309, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26782631

RESUMO

Mitochondrial transcript maturation in African trypanosomes requires an RNA editing reaction that is characterized by the insertion and deletion of U-nucleotides into otherwise non-functional mRNAs. The reaction is catalyzed by editosomes and requires guide (g)RNAs as templates. Recent data demonstrate that the binding of pre-edited mRNAs to editosomes is followed by a chaperone-type RNA remodeling reaction. Here we map the changes in RNA folding using selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE). We demonstrate that pre-mRNAs in their free state adopt intricately folded, highly stable 2D-structures. Editosome binding renders the pre-mRNAs to adopt 2D-conformations of reduced stabilities. On average about 30% of the nucleotides in every pre-mRNA are affected with a prevalence for U-nucleotides. The data demonstrate that the chaperone activity acts by increasing the flexibility of U-residues to lower their base-pairing probability. This results in a simplified RNA folding landscape with a reduced energy barrier to facilitate the binding of gRNAs. The data provide a first rational for the enigmatic U-specificity of the editing reaction.


Assuntos
Proteínas de Protozoários/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA de Protozoário , Proteínas de Ligação a RNA/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Quadruplex G , Genes Mitocondriais , Conformação de Ácido Nucleico , Ligação Proteica , Edição de RNA , Precursores de RNA/química , RNA Guia de Cinetoplastídeos/química , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Termodinâmica
18.
Artigo em Inglês | MEDLINE | ID: mdl-30613239

RESUMO

As problem-based learning (PBL) is becoming more and more popular, there is also a growing interest in developing and using technologies in the implementation of PBL. However, teachers may have difficulties to design and deliver a pedagogically well-designed and technically smoothly executable online or blended PBL process on their own because they lack appropriate expertise in learning theories and design methods as well as a deeper understanding of the potential affordances of the available technologies. From this premise, we are committed to developing and testing methods and tools to support the design and delivery of online or hybrid PBL processes with high flexibility and a low threshold of usage requirements. This paper presents a technical approach to develop a web-based PBL application that supports both authoring and run-time usage. In comparison with other tools and technical approaches, it is concluded that a combined use of a model-driven approach and semi-structured data management appears to be a promising approach to effectively and efficiently support the authoring, delivering, and execution of design-time and run-time PBL processes.

19.
Comput Soc Netw ; 3(1): 11, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-29355206

RESUMO

BACKGROUND: Detection of influential actors in social media such as Twitter or Facebook plays an important role for improving the quality and efficiency of work and services in many fields such as education and marketing. METHODS: The work described here aims to introduce a new approach that characterizes the influence of actors by the strength of attracting new active members into a networked community. We present a model of influence of an actor that is based on the attractiveness of the actor in terms of the number of other new actors with which he or she has established relations over time. RESULTS: We have used this concept and measure of influence to determine optimal seeds in a simulation of influence maximization using two empirically collected social networks for the underlying graphs. CONCLUSIONS: Our empirical results on the datasets demonstrate that our measure stands out as a useful measure to define the attractors comparing to the other influence measures.

20.
PLoS One ; 10(3): e0118940, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25742417

RESUMO

African trypanosomes cause a parasitic disease known as sleeping sickness. Mitochondrial transcript maturation in these organisms requires a RNA editing reaction that is characterized by the insertion and deletion of U-nucleotides into otherwise non-functional mRNAs. Editing represents an ideal target for a parasite-specific therapeutic intervention since the reaction cycle is absent in the infected host. In addition, editing relies on a macromolecular protein complex, the editosome, that only exists in the parasite. Therefore, all attempts to search for editing interfering compounds have been focused on molecules that bind to proteins of the editing machinery. However, in analogy to other RNA-driven biochemical pathways it should be possible to stall the reaction by targeting its substrate RNAs. Here we demonstrate inhibition of editing by specific aminoglycosides. The molecules bind into the major groove of the gRNA/pre-mRNA editing substrates thereby causing a stabilization of the RNA molecules through charge compensation and an increase in stacking. The data shed light on mechanistic details of the editing process and identify critical parameters for the development of new trypanocidal compounds.


Assuntos
Edição de RNA , RNA de Protozoário/metabolismo , Trypanosoma/metabolismo , RNA de Protozoário/genética , Termodinâmica , Trypanosoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...