Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Neurosci ; 17: 1120338, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37731462

RESUMO

Inhibitory circuits in the basal amygdala (BA) have been shown to play a crucial role in associative fear learning. How the excitatory synaptic inputs received by BA GABAergic interneurons are influenced by memory formation, a network parameter that may contribute to learning processes, is still largely unknown. Here, we investigated the features of excitatory synaptic transmission received by the three types of perisomatic inhibitory interneurons upon cue-dependent fear conditioning and aversive stimulus and tone presentations without association. Acute slices were prepared from transgenic mice: one group received tone presentation only (conditioned stimulus, CS group), the second group was challenged by mild electrical shocks unpaired with the CS (unsigned unconditioned stimulus, unsigned US group) and the third group was presented with the CS paired with the US (signed US group). We found that excitatory synaptic inputs (miniature excitatory postsynaptic currents, mEPSCs) recorded in distinct interneuron types in the BA showed plastic changes with different patterns. Parvalbumin (PV) basket cells in the unsigned US and signed US group received mEPSCs with reduced amplitude and rate in comparison to the only CS group. Coupling the US and CS in the signed US group caused a slight increase in the amplitude of the events in comparison to the unsigned US group, where the association of CS and US does not take place. Excitatory synaptic inputs onto cholecystokinin (CCK) basket cells showed a markedly different change from PV basket cells in these behavioral paradigms: only the decay time was significantly faster in the unsigned US group compared to the only CS group, whereas the amplitude of mEPSCs increased in the signed US group compared to the only CS group. Excitatory synaptic inputs received by PV axo-axonic cells showed the least difference in the three behavioral paradigm: the only significant change was that the rate of mEPSCs increased in the signed US group when compared to the only CS group. These results collectively show that associative learning and aversive stimuli unpaired with CS cause different changes in excitatory synaptic transmission in BA perisomatic interneuron types, supporting the hypothesis that they play distinct roles in the BA network operations upon pain information processing and fear memory formation.

2.
J Neurosci ; 43(42): 6972-6987, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37640552

RESUMO

Perisomatic inhibition profoundly controls neural function. However, the structural organization of inhibitory circuits giving rise to the perisomatic inhibition in the higher-order cortices is not completely known. Here, we performed a comprehensive analysis of those GABAergic cells in the medial prefrontal cortex (mPFC) that provide inputs onto the somata and proximal dendrites of pyramidal neurons. Our results show that most GABAergic axonal varicosities contacting the perisomatic region of superficial (layer 2/3) and deep (layer 5) pyramidal cells express parvalbumin (PV) or cannabinoid receptor type 1 (CB1). Further, we found that the ratio of PV/CB1 GABAergic inputs is larger on the somatic membrane surface of pyramidal tract neurons in comparison with those projecting to the contralateral hemisphere. Our morphologic analysis of in vitro labeled PV+ basket cells (PVBC) and CCK/CB1+ basket cells (CCKBC) revealed differences in many features. PVBC dendrites and axons arborized preferentially within the layer where their soma was located. In contrast, the axons of CCKBCs expanded throughout layers, although their dendrites were found preferentially either in superficial or deep layers. Finally, using anterograde trans-synaptic tracing we observed that PVBCs are preferentially innervated by thalamic and basal amygdala afferents in layers 5a and 5b, respectively. Thus, our results suggest that PVBCs can control the local circuit operation in a layer-specific manner via their characteristic arborization, whereas CCKBCs rather provide cross-layer inhibition in the mPFC.SIGNIFICANCE STATEMENT Inhibitory cells in cortical circuits are crucial for the precise control of local network activity. Nevertheless, in higher-order cortical areas that are involved in cognitive functions like decision-making, working memory, and cognitive flexibility, the structural organization of inhibitory cell circuits is not completely understood. In this study we show that perisomatic inhibitory control of excitatory cells in the medial prefrontal cortex is performed by two types of basket cells endowed with different morphologic properties that provide inhibitory inputs with distinct layer specificity on cells projecting to disparate areas. Revealing this difference in innervation strategy of the two basket cell types is a key step toward understanding how they fulfill their distinct roles in cortical network operations.


Assuntos
Interneurônios , Neurônios , Camundongos , Animais , Interneurônios/fisiologia , Neurônios/fisiologia , Axônios/fisiologia , Dendritos/fisiologia , Córtex Pré-Frontal/fisiologia , Células Piramidais/fisiologia , Parvalbuminas/metabolismo
3.
eNeuro ; 10(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36963833

RESUMO

A key assumption in studies of cortical functions is that excitatory principal neurons, but not inhibitory cells express calcium/calmodulin-dependent protein kinase II subunit α (CaMKIIα) resulting in a widespread use of CaMKIIα promoter-driven protein expression for principal cell manipulation and monitoring their activities. Using neuroanatomical and electrophysiological methods we demonstrate that in addition to pyramidal neurons, multiple types of cortical GABAegic cells are targeted by adeno-associated viral vectors (AAV) driven by the CaMKIIα promoter in both male and female mice. We tested the AAV5 and AAV9 serotype of viruses with either Channelrhodopsin 2 (ChR2)-mCherry or Archaerhodopsin-T-green fluorescent protein (GFP) constructs, with different dilutions. We show that in all cases, the reporter proteins can visualize a large fraction of different interneuron types, including parvalbumin (PV), somatostatin (SST), neuronal nitric oxide synthase (nNOS), neuropeptide Y (NPY), and cholecystokinin (CCK)-containing GABAergic cells, which altogether cover around 60% of the whole inhibitory cell population in cortical structures. Importantly, the expression of the excitatory opsin Channelrhodopsin 2 in the interneurons effectively drive spiking of infected GABAergic cells even if the immunodetectability of reporter proteins is ambiguous. Thus, our results challenge the use of CaMKIIα promoter-driven protein expression as a selective tool in targeting cortical glutamatergic neurons using viral vectors.


Assuntos
Interneurônios , Células Piramidais , Camundongos , Masculino , Feminino , Animais , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Células Piramidais/fisiologia , Interneurônios/fisiologia , Neurônios/metabolismo , Colecistocinina/metabolismo , Parvalbuminas/metabolismo
4.
Elife ; 112022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35040779

RESUMO

Hippocampal place cells are activated sequentially as an animal explores its environment. These activity sequences are internally recreated ('replayed'), either in the same or reversed order, during bursts of activity (sharp wave-ripples [SWRs]) that occur in sleep and awake rest. SWR-associated replay is thought to be critical for the creation and maintenance of long-term memory. In order to identify the cellular and network mechanisms of SWRs and replay, we constructed and simulated a data-driven model of area CA3 of the hippocampus. Our results show that the chain-like structure of recurrent excitatory interactions established during learning not only determines the content of replay, but is essential for the generation of the SWRs as well. We find that bidirectional replay requires the interplay of the experimentally confirmed, temporally symmetric plasticity rule, and cellular adaptation. Our model provides a unifying framework for diverse phenomena involving hippocampal plasticity, representations, and dynamics, and suggests that the structured neural codes induced by learning may have greater influence over cortical network states than previously appreciated.


Assuntos
Ondas Encefálicas/fisiologia , Região CA3 Hipocampal/fisiologia , Aprendizagem/fisiologia , Células de Lugar/fisiologia , Animais , Hipocampo/fisiologia , Interneurônios/fisiologia , Memória/fisiologia , Camundongos , Modelos Teóricos , Sono/fisiologia , Vigília/fisiologia
5.
Front Neural Circuits ; 15: 687257, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177472

RESUMO

The basolateral amygdala (BLA) is a cortical structure based on its cell types, connectivity features, and developmental characteristics. This part of the amygdala is considered to be the main entry site of processed and multisensory information delivered via cortical and thalamic afferents. Although GABAergic inhibitory cells in the BLA comprise only 20% of the entire neuronal population, they provide essential control over proper network operation. Previous studies have uncovered that GABAergic cells in the basolateral amygdala are as diverse as those present in other cortical regions, including the hippocampus and neocortex. To understand the role of inhibitory cells in various amygdala functions, we need to reveal the connectivity and input-output features of the different types of GABAergic cells. Here, I review the recent achievements in uncovering the diversity of GABAergic cells in the basolateral amygdala with a specific focus on the microcircuit organization of these inhibitory cells.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Tonsila do Cerebelo , Interneurônios , Neurônios
6.
J Neurosci ; 41(21): 4575-4595, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-33837051

RESUMO

GABAergic neurons are key circuit elements in cortical networks. Despite growing evidence showing that inhibitory cells play a critical role in the lateral (LA) and basal (BA) amygdala functions, neither the number of GABAergic neurons nor the ratio of their distinct types has been determined in these amygdalar nuclei. Using unbiased stereology, we found that the ratio of GABAergic neurons in the BA (22%) is significantly higher than in the LA (16%) in both male and female mice. No difference was observed between the right and left hemispheres in either sex. In addition, we assessed the ratio of the major inhibitory cell types in both amygdalar nuclei. Using transgenic mice and a viral strategy for visualizing inhibitory cells combined with immunocytochemistry, we estimated that the following cell types together compose the vast majority of GABAergic cells in the LA and BA: axo-axonic cells (5.5%-6%), basket cells expressing parvalbumin (17%-20%) or cholecystokinin (7%-9%), dendrite-targeting inhibitory cells expressing somatostatin (10%-16%), NPY-containing neurogliaform cells (14%-15%), VIP and/or calretinin-expressing interneuron-selective interneurons (29%-38%), and GABAergic projection neurons expressing somatostatin and neuronal nitric oxide synthase (5.5%-8%). Our results show that these amygdalar nuclei contain all major GABAergic neuron types as found in other cortical regions. Furthermore, our data offer an essential reference for future studies aiming to reveal changes in GABAergic cell number and in inhibitory cell types typically observed under different pathologic conditions, and to model functioning amygdalar networks in health and disease.SIGNIFICANCE STATEMENT GABAergic cells in cortical structures, as in the lateral and basal nucleus of the amygdala, have a determinant role in controlling circuit operation. In this study, we provide the first estimate for the total number of inhibitory cells in these two amygdalar nuclei. In addition, our study is the first to define the ratio of the major GABAergic cell types present in these cortical networks. Taking into account that hyperexcitability in the amygdala, arising from the imbalance between excitation and inhibition typifies many altered brain functions, including anxiety, post-traumatic stress disorder, schizophrenia, and autism, uncovering the number and ratio of distinct amygdalar inhibitory cell types offers a solid base for comparing the changes in inhibition in pathologic brain states.


Assuntos
Complexo Nuclear Basolateral da Amígdala/citologia , Neurônios GABAérgicos/citologia , Animais , Feminino , Masculino , Camundongos , Camundongos Transgênicos
7.
eNeuro ; 7(4)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32571963

RESUMO

We analyzed the origin and relevance of the perisomatic excitatory inputs on the parvalbumin interneurons of the granule cell layer in mouse. Confocal analysis of the glutamatergic innervation showed that it represents ∼50% of the perisomatic synapses that parvalbumin cells receive. This excitatory input may originate from granule cell collaterals, the mossy cells, or even supramammillary nucleus. First, we assessed the input from the mossy cells on parvalbumin interneurons. Axon terminals of mossy cells were visualized by their calretinin content. Using multicolor confocal microscopy, we observed that less than 10% of perisomatic excitatory innervation of parvalbumin cells could originate from mossy cells. Correlative light and electron microscopy revealed that innervation from mossy cells, although present, was indeed infrequent, except for those parvalbumin cells whose somata were located in the inner molecular layer. Second, we investigated the potential input from supramammillary nucleus on parvalbumin cell somata using anterograde tracing or immunocytochemistry against vesicular glutamate transporter 2 (VGLUT2) and found only occasional contacts. Third, we intracellularly filled dentate granule cells in acute slice preparations using whole-cell recording and examined whether their axon collaterals target parvalbumin interneurons. We found that typical granule cells do not innervate the perisomatic region of these GABAergic cells. In sharp contrast, semilunar granule cells (SGCs), a scarce granule cell subtype often contacted the parvalbumin cell soma and proximal dendrites. Our data, therefore, show that perisomatic excitatory drive of parvalbumin interneurons in the granular layer of the dentate gyrus is abundant and originates primarily from SGCs.


Assuntos
Giro Denteado , Parvalbuminas , Animais , Axônios/metabolismo , Giro Denteado/metabolismo , Interneurônios/metabolismo , Camundongos , Neurônios/metabolismo , Parvalbuminas/metabolismo
8.
eNeuro ; 6(6)2019.
Artigo em Inglês | MEDLINE | ID: mdl-31636080

RESUMO

There is growing evidence that interneurons (INs) orchestrate neural activity and plasticity in corticoamygdala circuits to regulate fear behaviors. However, defining the precise role of cholecystokinin-expressing INs (CCK INs) remains elusive due to the technical challenge of parsing this population from CCK-expressing principal neurons (CCK PNs). Here, we used an intersectional genetic strategy in CCK-Cre;Dlx5/6-Flpe double-transgenic mice to study the anatomical, molecular and electrophysiological properties of CCK INs in the basal amygdala (BA) and optogenetically manipulate these cells during fear extinction. Electrophysiological recordings confirmed that this strategy targeted GABAergic cells and that a significant proportion expressed functional cannabinoid CB1 receptors; a defining characteristic of CCK-expressing basket cells. However, immunostaining showed that subsets of the genetically-targeted cells expressed either neuropeptide Y (NPY; 29%) or parvalbumin (PV; 17%), but not somatostatin (SOM) or Ca2+/calmodulin-dependent protein kinase II (CaMKII)-α. Further morphological and electrophysiological analyses showed that four IN types could be identified among the EYFP-expressing cells: CCK/cannabinoid receptor type 1 (CB1R)-expressing basket cells, neurogliaform cells, PV+ basket cells, and PV+ axo-axonic cells. At the behavioral level, in vivo optogenetic photostimulation of the targeted population during extinction acquisition led to reduced freezing on a light-free extinction retrieval test, indicating extinction memory facilitation; whereas photosilencing was without effect. Conversely, non-selective (i.e., inclusive of INs and PNs) photostimulation or photosilencing of CCK-targeted cells, using CCK-Cre single-transgenic mice, impaired extinction. These data reveal an unexpectedly high degree of phenotypic complexity in a unique population of extinction-modulating BA INs.


Assuntos
Tonsila do Cerebelo/fisiologia , Colecistocinina/metabolismo , Extinção Psicológica/fisiologia , Medo/fisiologia , Interneurônios/fisiologia , Tonsila do Cerebelo/metabolismo , Animais , Condicionamento Clássico/fisiologia , Interneurônios/metabolismo , Camundongos , Camundongos Transgênicos , Optogenética
9.
J Neurosci ; 38(31): 6983-7003, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29954847

RESUMO

In cortical structures, principal cell activity is tightly regulated by different GABAergic interneurons (INs). Among these INs are vasoactive intestinal polypeptide-expressing (VIP+) INs, which innervate preferentially other INs, providing a structural basis for temporal disinhibition of principal cells. However, relatively little is known about VIP+ INs in the amygdaloid basolateral complex (BLA). In this study, we report that VIP+ INs have a variable density in the distinct subdivisions of the mouse BLA. Based on different anatomical, neurochemical, and electrophysiological criteria, VIP+ INs could be identified as IN-selective INs (IS-INs) and basket cells expressing CB1 cannabinoid receptors. Whole-cell recordings of VIP+ IS-INs revealed three different spiking patterns, none of which was associated with the expression of calretinin. Genetic targeting combined with optogenetics and in vitro recordings enabled us to identify several types of BLA INs innervated by VIP+ INs, including other IS-INs, basket and neurogliaform cells. Moreover, light stimulation of VIP+ basket cell axon terminals, characterized by CB1 sensitivity, evoked IPSPs in ∼20% of principal neurons. Finally, we show that VIP+ INs receive a dense innervation from both GABAergic inputs (although only 10% from other VIP+ INs) and distinct glutamatergic inputs, identified by their expression of different vesicular glutamate transporters.In conclusion, our study provides a wide-range analysis of single-cell properties of VIP+ INs in the mouse BLA and of their intrinsic and extrinsic connectivity. Our results reinforce the evidence that VIP+ INs are structurally and functionally heterogeneous and that this heterogeneity could mediate different roles in amygdala-dependent functions.SIGNIFICANCE STATEMENT We provide the first comprehensive analysis of the distribution of vasoactive intestinal polypeptide-expressing (VIP+) interneurons (INs) across the entire mouse amygdaloid basolateral complex (BLA), as well as of their morphological and physiological properties. VIP+ INs in the neocortex preferentially target other INs to form a disinhibitory network that facilitates principal cell firing. Our study is the first to demonstrate the presence of such a disinhibitory circuitry in the BLA. We observed structural and functional heterogeneity of these INs and characterized their input/output connectivity. We also identified several types of BLA INs that, when inhibited, may provide a temporal window for principal cell firing and facilitate associative plasticity, e.g., in fear learning.


Assuntos
Complexo Nuclear Basolateral da Amígdala/citologia , Interneurônios/fisiologia , Peptídeo Intestinal Vasoativo/análise , Potenciais de Ação , Animais , Complexo Nuclear Basolateral da Amígdala/fisiologia , Contagem de Células , Conectoma , Cruzamentos Genéticos , Genes Reporter , Ácido Glutâmico/metabolismo , Potenciais Pós-Sinápticos Inibidores/efeitos da radiação , Interneurônios/química , Interneurônios/classificação , Interneurônios/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Optogenética , Técnicas de Patch-Clamp , Terminações Pré-Sinápticas/ultraestrutura , Receptor CB1 de Canabinoide/análise , Proteínas Vesiculares de Transporte de Glutamato/metabolismo , Ácido gama-Aminobutírico/metabolismo
10.
PLoS Biol ; 15(5): e2001421, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28542195

RESUMO

Information processing in neural networks depends on the connectivity among excitatory and inhibitory neurons. The presence of parallel, distinctly controlled local circuits within a cortical network may ensure an effective and dynamic regulation of microcircuit function. By applying a combination of optogenetics, electrophysiological recordings, and high resolution microscopic techniques, we uncovered the organizing principles of synaptic communication between principal neurons and basket cells in the basal nucleus of the amygdala. In this cortical structure, known to be critical for emotional memory formation, we revealed the presence of 2 parallel basket cell networks expressing either parvalbumin or cholecystokinin. While the 2 basket cell types are mutually interconnected within their own category via synapses and gap junctions, they avoid innervating each other, but form synaptic contacts with axo-axonic cells. Importantly, both basket cell types have the similar potency to control principal neuron spiking, but they receive excitatory input from principal neurons with entirely diverse features. This distinct feedback synaptic excitation enables a markedly different recruitment of the 2 basket cell types upon the activation of local principal neurons. Our data suggest fundamentally different functions for the 2 parallel basket cell networks in circuit operations in the amygdala.


Assuntos
Tonsila do Cerebelo/fisiologia , Axônios/fisiologia , Neurônios GABAérgicos/fisiologia , Interneurônios/fisiologia , Rede Nervosa/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Recrutamento Neurofisiológico , Tonsila do Cerebelo/citologia , Animais , Biomarcadores/metabolismo , Mapeamento Encefálico , Quimiocinas CC/genética , Quimiocinas CC/metabolismo , Feminino , Neurônios GABAérgicos/citologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Interneurônios/citologia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos Transgênicos , Rede Nervosa/citologia , Proteínas do Tecido Nervoso/genética , Condução Nervosa , Optogenética , Parvalbuminas/genética , Parvalbuminas/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas Recombinantes/metabolismo , Análise de Célula Única
11.
Brain Struct Funct ; 222(8): 3543-3565, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28391401

RESUMO

Principal neurons in cortical regions including the basal nucleus of the amygdala (BA) are innervated by several types of inhibitory cells, one of which expresses the neuropeptide cholecystokinin (CCK) and the type 1 cannabinoid receptor (CB1R). CCK/CB1R-expressing interneurons may have a profound impact on amygdalar function by controlling its output. However, very little is known about their properties, and therefore their role in circuit operation cannot be predicted. To characterize the CCK/CB1R-expressing interneurons in the BA, we combined in vitro electrophysiological recordings and neuroanatomical techniques in a transgenic mouse that expresses DsRed fluorescent protein under the control of the CCK promoter. We found that the majority of CCK/CB1R-positive interneurons expressed either the type 3 vesicular glutamate transporter (VGluT3) or the Ca2+ binding protein calbindin (Calb). VGluT3+ CCK/CB1R-expressing interneurons targeted the soma of principal neurons more often than Calb+ CCK/CB1R-expressing interneurons, but the dendritic morphology and membrane properties of these two neurochemically distinct interneuron types were not significantly different. The results of paired recordings showed that the unitary IPSC properties of VGluT3+ or Calb+ CCK/CB1R-expressing interneurons recorded in principal neurons were indistinguishable. We verified that endocannabinoids at the output synapses of CCK/CB1R-expressing interneurons could potently reduce the unitary IPSC magnitude. In summary, independent of the neurochemical content, CCK/CB1R-expressing interneurons have similar physiological and morphological properties, providing an endocannabinoid-sensitive synaptic inhibition onto the amygdalar principal neurons.


Assuntos
Tonsila do Cerebelo/citologia , Tonsila do Cerebelo/fisiologia , Colecistocinina/metabolismo , Interneurônios/citologia , Interneurônios/fisiologia , Receptor CB1 de Canabinoide/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Tonsila do Cerebelo/metabolismo , Animais , Calbindinas/metabolismo , Dendritos , Feminino , Interneurônios/metabolismo , Masculino , Potenciais da Membrana , Camundongos Transgênicos , Transmissão Sináptica
12.
Elife ; 62017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-28060701

RESUMO

Efficient control of principal neuron firing by basket cells is critical for information processing in cortical microcircuits, however, the relative contribution of their perisomatic and dendritic synapses to spike inhibition is still unknown. Using in vitro electrophysiological paired recordings we reveal that in the mouse basal amygdala cholecystokinin- and parvalbumin-containing basket cells provide equally potent control of principal neuron spiking. We performed pharmacological manipulations, light and electron microscopic investigations to show that, although basket cells innervate the entire somato-denditic membrane surface of principal neurons, the spike controlling effect is achieved primarily via the minority of synapses targeting the perisomatic region. As the innervation patterns of individual basket cells on their different postsynaptic partners show high variability, the impact of inhibitory control accomplished by single basket cells is also variable. Our results show that both basket cell types can powerfully regulate the activity in amygdala networks predominantly via their perisomatic synapses.


Assuntos
Tonsila do Cerebelo/fisiologia , Neurônios GABAérgicos/fisiologia , Rede Nervosa/fisiologia , Inibição Neural , Sinapses/fisiologia , Potenciais de Ação , Tonsila do Cerebelo/anatomia & histologia , Animais , Camundongos , Rede Nervosa/anatomia & histologia
13.
Eur J Neurosci ; 45(4): 548-558, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27977063

RESUMO

The perisomatic region of principal neurons in cortical regions is innervated by three types of GABAergic interneuron, including parvalbumin-containing basket cells (PVBCs) and axo-axonic cells (AACs), as well as cholecystokinin and type 1 cannabinoid receptor-expressing basket cells (CCK/CB1BCs). These perisomatic inhibitory cell types can also be found in the basal nucleus of the amygdala, however, their output properties are largely unknown. Here, we performed whole-cell recordings in morphologically identified interneurons in slices prepared from transgenic mice, in which the GABAergic cells could be selectively targeted. Investigating the passive and active membrane properties of interneurons located within the basal amygdala revealed that the three interneuron types have distinct single-cell properties. For instance, the input resistance, spike rate, accommodation in discharge rate, or after-hyperpolarization width at the half maximal amplitude separated the three interneuron types. Furthermore, we performed paired recordings from interneurons and principal neurons to uncover the basic features of unitary inhibitory postsynaptic currents (uIPSCs). Although we found no difference in the magnitude of responses measured in the principal neurons, the uIPSCs originating from the distinct interneuron types differed in rise time, failure rate, latency, and short-term dynamics. Moreover, the asynchronous transmitter release induced by a train of action potentials was typical for the output synapses of CCK/CB1BCs. Our results suggest that, despite the similar uIPSC magnitudes originating from the three perisomatic inhibitory cell types, their distinct release properties together with the marked differences in their spiking characteristics may contribute to accomplish specific functions in amygdala network operation.


Assuntos
Tonsila do Cerebelo/fisiologia , Neurônios GABAérgicos/fisiologia , Potenciais Pós-Sinápticos Inibidores , Interneurônios/fisiologia , Potenciais de Ação , Tonsila do Cerebelo/citologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
14.
Front Neuroanat ; 10: 20, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27013983

RESUMO

Spike generation is most effectively controlled by inhibitory inputs that target the perisomatic region of neurons. Despite the critical importance of this functional domain, very little is known about the organization of the GABAergic inputs contacting the perisomatic region of principal cells (PCs) in the basolateral amygdala. Using immunocytochemistry combined with in vitro single-cell labeling we determined the number and sources of GABAergic inputs of PCs at light and electron microscopic levels in mice. We found that the soma and proximal dendrites of PCs were innervated primarily by two neurochemically distinct basket cell types expressing parvalbumin (PVBC) or cholecystokinin and CB1 cannabinoid receptors (CCK/CB1BC). The innervation of the initial segment of PC axons was found to be parceled out by PVBCs and axo-axonic cells (AAC), as the majority of GABAergic inputs onto the region nearest to the soma (between 0 and 10 µm) originated from PVBCs, while the largest portion of the axon initial segment was innervated by AACs. Detailed morphological investigations revealed that the three perisomatic region-targeting interneuron types significantly differed in dendritic and axonal arborization properties. We found that, although individual PVBCs targeted PCs via more terminals than CCK/CB1BCs, similar numbers (15-17) of the two BC types converge onto single PCs, whereas fewer (6-7) AACs innervate the axon initial segment of single PCs. Furthermore, we estimated that a PVBC and a CCK/CB1BC may target 800-900 and 700-800 PCs, respectively, while an AAC can innervate 600-650 PCs. Thus, BCs and AACs innervate ~10 and 20% of PC population, respectively, within their axonal cloud. Our results collectively suggest, that these interneuron types may be differently affiliated within the local amygdalar microcircuits in order to fulfill specific functions in network operation during various brain states.

16.
Nat Commun ; 6: 6557, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25891347

RESUMO

The release of GABA from cholecystokinin-containing interneurons is modulated by type-1 cannabinoid receptors (CB1). Here we tested the hypothesis that the strength of CB1-mediated modulation of GABA release is related to the CB1 content of axon terminals. Basket cell boutons have on average 78% higher CB1 content than those of dendritic-layer-innervating (DLI) cells, a consequence of larger bouton surface and higher CB1 density. The CB1 antagonist AM251 caused a 54% increase in action potential-evoked [Ca(2+)] in boutons of basket cells, but not in DLI cells. However, the effect of AM251 did not correlate with CB1 immunoreactivity of individual boutons. Moreover, a CB1 agonist decreased [Ca(2+)] in a cell type- and CB1-content-independent manner. Replica immunogold labelling demonstrated the colocalization of CB1 with the Cav2.2 Ca(2+) channel subunit. Our data suggest that only a subpopulation of CB1s, within nanometre distances from their target Cav2.2 channels, are responsible for endocannabinoid-mediated modulation of GABA release.


Assuntos
Endocanabinoides/metabolismo , Terminações Pré-Sinápticas/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Feminino , Hipocampo/citologia , Hipocampo/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/classificação , Proteína Vermelha Fluorescente
17.
J Neurosci ; 34(49): 16194-206, 2014 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-25471561

RESUMO

Axo-axonic cells (AACs) in cortical regions selectively innervate the axon initial segments (AISs) of principal cells (PCs), where the action potentials are generated. These GABAergic interneurons can alter the activity of PCs, but how the efficacy of spike control correlates with the number of output synapses remains unclear. Moreover, the relationship between the spatial distribution of GABAergic synapses and the action potential initiation site along the AISs is not well defined. Using paired recordings obtained in the mouse basolateral amygdala, we found that AACs powerfully inhibited or delayed the timing of PC spiking by 30 ms, if AAC output preceded PC spiking with no more than 80 ms. By correlating the number of synapses and the probability of spiking, we revealed that larger numbers of presynaptic AAC boutons giving rise to larger postsynaptic responses provided more effective inhibition of PC spiking. At least 10-12 AAC synapses, which could originate from 2-3 AACs on average, were necessary to veto the PC firing under our recording conditions. Furthermore, we determined that the threshold for the action potential generation along PC axons is the lowest between 20 and 40 µm from soma, which axonal segment received the highest density of GABAergic inputs. Single AACs preferentially innervated this narrow portion of the AIS where action potentials were generated with the highest likelihood, regardless of the number of synapses forming a given connection. Our results uncovered a fine organization of AAC innervation maximizing their inhibitory efficacy by strategically positioning synapses along the AISs.


Assuntos
Potenciais de Ação/fisiologia , Axônios/fisiologia , Complexo Nuclear Basolateral da Amígdala/citologia , Complexo Nuclear Basolateral da Amígdala/fisiologia , Inibição Neural/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia , Animais , Complexo Nuclear Basolateral da Amígdala/ultraestrutura , Feminino , Neurônios GABAérgicos/fisiologia , Interneurônios/fisiologia , Masculino , Camundongos , Terminações Pré-Sinápticas/fisiologia , Sinapses/ultraestrutura
18.
J Neurosci ; 34(34): 11385-98, 2014 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-25143618

RESUMO

Replay of neuronal activity during hippocampal sharp wave-ripples (SWRs) is essential in memory formation. To understand the mechanisms underlying the initiation of irregularly occurring SWRs and the generation of periodic ripples, we selectively manipulated different components of the CA3 network in mouse hippocampal slices. We recorded EPSCs and IPSCs to examine the buildup of neuronal activity preceding SWRs and analyzed the distribution of time intervals between subsequent SWR events. Our results suggest that SWRs are initiated through a combined refractory and stochastic mechanism. SWRs initiate when firing in a set of spontaneously active pyramidal cells triggers a gradual, exponential buildup of activity in the recurrent CA3 network. We showed that this tonic excitatory envelope drives reciprocally connected parvalbumin-positive basket cells, which start ripple-frequency spiking that is phase-locked through reciprocal inhibition. The synchronized GABA(A) receptor-mediated currents give rise to a major component of the ripple-frequency oscillation in the local field potential and organize the phase-locked spiking of pyramidal cells. Optogenetic stimulation of parvalbumin-positive cells evoked full SWRs and EPSC sequences in pyramidal cells. Even with excitation blocked, tonic driving of parvalbumin-positive cells evoked ripple oscillations. Conversely, optogenetic silencing of parvalbumin-positive cells interrupted the SWRs or inhibited their occurrence. Local drug applications and modeling experiments confirmed that the activity of parvalbumin-positive perisomatic inhibitory neurons is both necessary and sufficient for ripple-frequency current and rhythm generation. These interneurons are thus essential in organizing pyramidal cell activity not only during gamma oscillation, but, in a different configuration, during SWRs.


Assuntos
Potenciais de Ação/fisiologia , Região CA3 Hipocampal/citologia , Região CA3 Hipocampal/fisiologia , Neurônios/fisiologia , Potenciais Evocados Miogênicos Vestibulares/fisiologia , Potenciais de Ação/efeitos dos fármacos , Agatoxinas/farmacologia , Anestésicos Locais/farmacologia , Animais , Animais Recém-Nascidos , Anquirinas/metabolismo , Região CA3 Hipocampal/efeitos dos fármacos , Bloqueadores dos Canais de Cálcio/farmacologia , Channelrhodopsins , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Feminino , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Masculino , Camundongos , Camundongos Transgênicos , Modelos Neurológicos , Neurônios/efeitos dos fármacos , Parvalbuminas/genética , Detecção de Sinal Psicológico , Tetrodotoxina/farmacologia , Potenciais Evocados Miogênicos Vestibulares/efeitos dos fármacos
19.
Hippocampus ; 24(12): 1506-23, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25044969

RESUMO

A subpopulation of GABAergic cells in cortical structures expresses CB1 cannabinoid receptors (CB1 ) on their axon terminals. To understand the function of these interneurons in information processing, it is necessary to uncover how they are embedded into neuronal circuits. Therefore, the proportion of GABAergic terminals expressing CB1 and the morphological and electrophysiological properties of CB1 -immunoreactive interneurons should be revealed. We investigated the ratio and the origin of CB1 -expressing inhibitory boutons in the CA3 region of the hippocampus. Using immunocytochemical techniques, we estimated that ∼40% of GABAergic axon terminals in different layers of CA3 also expressed CB1 . To identify the inhibitory cell types expressing CB1 in this region, we recorded and intracellularly labeled interneurons in hippocampal slices. CB1 -expressing interneurons showed distinct axonal arborization, and were classified as basket cells, mossy-fiber-associated cells, dendritic-layer-innervating cells or perforant-path-associated cells. In each morphological category, a substantial variability in axonal projection was observed. In contrast to the diverse morphology, the active and passive membrane properties were found to be rather similar. Using paired recordings, we found that pyramidal cells displayed large and fast unitary postsynaptic currents in response to activating basket and mossy-fiber-associated cells, while they showed slower and smaller synaptic events in pairs originating from interneurons that innervate the dendritic layer, which may be due to dendritic filtering. In addition, CB1 activation significantly reduced the amplitude of the postsynaptic currents in each cell pair tested. Our data suggest that CB1 -expressing interneurons with different axonal projections have comparable physiological characteristics, contributing to a similar proportion of GABAergic inputs along the somato-dendritic axis of CA3 pyramidal cells.


Assuntos
Região CA3 Hipocampal/fisiologia , Neurônios GABAérgicos/fisiologia , Interneurônios/fisiologia , Receptor CB1 de Canabinoide/metabolismo , Animais , Axônios/fisiologia , Região CA3 Hipocampal/citologia , Feminino , Neurônios GABAérgicos/citologia , Interneurônios/citologia , Masculino , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Inibição Neural/fisiologia , Plasticidade Neuronal/fisiologia , Técnicas de Patch-Clamp , Terminações Pré-Sinápticas/fisiologia , Células Piramidais/fisiologia , Transmissão Sináptica/fisiologia , Técnicas de Cultura de Tecidos
20.
J Neurosci ; 34(23): 7958-63, 2014 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-24899717

RESUMO

CB1 cannabinoid receptors (CB1) are located at axon terminals and effectively control synaptic communication and thereby circuit operation widespread in the CNS. Although it is partially uncovered how CB1 activation leads to the reduction of synaptic excitation, the mechanisms of the decrease of GABA release upon activation of these cannabinoid receptors remain elusive. To determine the mechanisms underlying the suppression of synaptic transmission by CB1 at GABAergic synapses, we recorded unitary IPSCs (uIPSCs) at cholecystokinin-expressing interneuron-pyramidal cell connections and imaged presynaptic [Ca(2+)] transients in mouse hippocampal slices. Our results reveal a power function with an exponent of 2.2 between the amplitude of uIPSCs and intrabouton [Ca(2+)]. Altering CB1 function by either increasing endocannabinoid production or removing its tonic activity allowed us to demonstrate that CB1 controls GABA release by inhibiting Ca(2+) entry into presynaptic axon terminals via N-type (Cav2.2) Ca(2+) channels. These results provide evidence for modulation of intrabouton Ca(2+) influx into GABAergic axon terminals by CB1, leading to the effective suppression of synaptic inhibition.


Assuntos
Cálcio/metabolismo , Terminações Pré-Sinápticas/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Sinapses/fisiologia , Ácido gama-Aminobutírico/metabolismo , Animais , Animais Recém-Nascidos , Bloqueadores dos Canais de Cálcio/farmacologia , Colecistocinina/genética , Colecistocinina/farmacologia , Feminino , Hipocampo/citologia , Técnicas In Vitro , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/fisiologia , Interneurônios/efeitos dos fármacos , Interneurônios/fisiologia , Proteínas Luminescentes/genética , Masculino , Camundongos , Camundongos Transgênicos , Piperidinas/farmacologia , Terminações Pré-Sinápticas/efeitos dos fármacos , Pirazóis/farmacologia , Sinapses/efeitos dos fármacos , ômega-Conotoxina GVIA/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...