Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Anaesthesiol Scand ; 64(9): 1287-1294, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32521045

RESUMO

BACKGROUND: Controlling arterial carbon dioxide is paramount in mechanically ventilated patients, and an accurate and continuous noninvasive monitoring method would optimize management in dynamic situations. In this study, we validated and further refined formulas for estimating partial pressure of carbon dioxide with respiratory gas and pulse oximetry data in mechanically ventilated cardiac arrest patients. METHODS: A total of 4741 data sets were collected retrospectively from 233 resuscitated patients undergoing therapeutic hypothermia. The original formula used to analyze the data is PaCO2 -est1 = PETCO2  + k[(PIO2  - PETCO2 ) - PaO2 ]. To achieve better accuracy, we further modified the formula to PaCO2 -est2 = k1 *PETCO2  + k2 *(PIO2  - PETCO2 ) + k3 *(100-SpO2 ). The coefficients were determined by identifying the minimal difference between the measured and calculated arterial carbon dioxide values in a development set. The accuracy of these two methods was compared with the estimation of the partial pressure of carbon dioxide using end-tidal carbon dioxide. RESULTS: With PaCO2 -est1, the mean difference between the partial pressure of carbon dioxide, and the estimated carbon dioxide was 0.08 kPa (SE ±0.003); with PaCO2 -est2 the difference was 0.036 kPa (SE ±0.009). The mean difference between the partial pressure of carbon dioxide and end-tidal carbon dioxide was 0.72 kPa (SE ±0.01). In a mixed linear model, there was a significant difference between the estimation using end-tidal carbon dioxide and PaCO2 -est1 (P < .001) and PaCO2 -est2 (P < .001) respectively. CONCLUSIONS: This novel formula appears to provide an accurate, continuous, and noninvasive estimation of arterial carbon dioxide.


Assuntos
Dióxido de Carbono , Parada Cardíaca , Humanos , Pressão Parcial , Respiração Artificial , Estudos Retrospectivos
2.
J Clin Med ; 7(9)2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30235787

RESUMO

Arterial blood gas (ABG) analysis is the traditional method for measuring the partial pressure of carbon dioxide. In mechanically ventilated patients a continuous noninvasive monitoring of carbon dioxide would obviously be attractive. In the current study, we present a novel formula for noninvasive estimation of arterial carbon dioxide. Eighty-one datasets were collected from 19 anesthetized and mechanically ventilated pigs. Eleven animals were mechanically ventilated without interventions. In the remaining eight pigs the partial pressure of carbon dioxide was manipulated. The new formula (Formula 1) is PaCO2 = PETCO2 + k(PETO2 - PaO2) where PaO2 was calculated from the oxygen saturation. We tested the agreements of this novel formula and compared it to a traditional method using the baseline PaCO2 - ETCO2 gap added to subsequently measured, end-tidal carbon dioxide levels (Formula 2). The mean difference between PaCO2 and calculated carbon dioxide (Formula 1) was 0.16 kPa (±SE 1.17). The mean difference between PaCO2 and carbon dioxide with Formula 2 was 0.66 kPa (±SE 0.18). With a mixed linear model excluding cases with cardiorespiratory collapse, there was a significant difference between formulae (p < 0.001), as well as significant interaction between formulae and time (p < 0.001). In this preliminary animal study, this novel formula appears to have a reasonable agreement with PaCO2 values measured with ABG analysis, but needs further validation in human patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...