Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aquat Toxicol ; 105(1-2): 41-8, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21684240

RESUMO

Ethinyl estradiol is a potent endocrine disrupting compound in fish and ubiquitously present in the aquatic environment. In this study, we exposed adult zebra fish (Danio rerio) males to 0, 5 or 25 ng Ethinyl estradiol/L for 14 days and analyzed the effects on non-reproductive behavior. Effects of treatment of the exposed males was shown by vitellogenin induction, while brain aromatase (CYP 19B) activity was not significantly altered. Both concentrations of Ethinyl estradiol significantly altered the behavior in the Novel tank test, where anxiety is determined as the tendency to stay at the bottom when introduced into an unfamiliar environment. The effects were, however, opposite for the two concentrations. Fish that were exposed to 5 ng/L had longer latency before upswim, fewer transitions to the upper half and shorter total time spent in the upper half compared with control fish, while 25 ng Ethinyl estradiol treatment resulted in shorter latency and more and longer visits to the upper half. The swimming activity of 25, but not 5 ng-exposed fish were slightly but significantly reduced, and these fish tended to spend a lot of time at the surface. We also studied the shoaling behavior as the tendency to leave a shoal of littermates trapped behind a Plexiglas barrier at one end of the test tank. The fish treated with Ethinyl estradiol had significantly longer latency before leaving shoal mates and left the shoal fewer times. Further, the fish exposed to 5 ng/L also spent significantly less time away from shoal than control fish. Fertilization frequency was higher in males exposed to 5 ng/L Ethinyl estradiol when compared with control males, while no spawning was observed after treatment with 25 ng/L. The testes from both treatment groups contained a normal distribution of spermatogenesis stages, and no abnormality in testis morphology could be observed. In conclusion, we have observed effects on two behaviors not related to reproduction in zebra fish males after treatment with Ethinyl estradiol, adding to the ecological consequences of contamination of aquatic environments with estrogenic substances.


Assuntos
Ansiedade/induzido quimicamente , Comportamento Animal/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Etinilestradiol/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Aromatase/genética , Aromatase/metabolismo , Fertilização/efeitos dos fármacos , Masculino , Reprodução/efeitos dos fármacos , Natação , Testículo/efeitos dos fármacos , Vitelogeninas/genética , Vitelogeninas/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
2.
Fish Physiol Biochem ; 37(4): 911-8, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21537944

RESUMO

Behaviour studies are used in toxicology research as they are excellent tools to measure physiological end-points caused by exogenous chemicals. In mammals both reproductive and non-reproductive behaviours have been used for a long period of time, whereas in teleost fishes non-reproductive behaviours have received little attention compared to reproductive behaviours. Recent advances in measuring stress related behaviours in zebrafish have provided additional tools to understand behaviour toxicology in fish. One species with well documented reproductive behaviour disturbed by different toxicants is the guppy, which is better suited than zebrafish for reproductive behaviour studies and therefore might be a better model organism for comparative behaviour studies in fish toxicology. Here we report new applications for non-reproductive behaviours in guppy and test these behaviours on males treated with the endocrine disruptor 17α-ethynylestradiol at environmentally relevant concentrations. 17α-ethynylestradiol increased freezing and bottom-dwelling when fish were placed in a non-familiar aquarium, but did not significantly affect shoaling behaviour. These results are similar to the anxiogenic behaviours seen in rats treated perinatally with 17α-ethynylestradiol and add more concern to the impacts of endocrine disruptors on aquatic wildlife.


Assuntos
Comportamento Animal/efeitos dos fármacos , Disruptores Endócrinos/efeitos adversos , Etinilestradiol/efeitos adversos , Poluentes Químicos da Água/efeitos adversos , Animais , Ansiedade , Masculino , Poecilia , Estresse Psicológico , Testes de Toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...