Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 530: 667-674, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30007196

RESUMO

The in-plane permeability of porous thin films is an important fluid mechanical property that determines wicking and pressure-driven flow behavior in such materials. This property has so far been challenging to measure directly due to the small sidewall cross-sectional area of thin films available for flow. In this work, we propose and experimentally demonstrate a novel technique for directly measuring in-plane permeability of porous thin films of arbitrary thicknesses, in situ, using a manifold pressed to the top surface of the film. We both measure and simulate the influence of the two dimensional flow field produced in a film by the manifold and extract the permeability from measurements of pressure drop at fixed flow rates. Permeability values measured using the technique for a periodic array of channels are comparable to theoretical predictions. We also determine in-plane permeability of arrays of pillars and electrodeposited porous copper films. This technique is a robust tool to characterize permeability of thin films of arbitrary thicknesses on a variety of substrates. In Supplementary material, we provide a solid model, which is useful in three-dimensional printer reproductions of our device.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...