Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 12262, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35851322

RESUMO

Automatic liver tumor segmentation can facilitate the planning of liver interventions. For diagnosis of hepatocellular carcinoma, dynamic contrast-enhanced MRI (DCE-MRI) can yield a higher sensitivity than contrast-enhanced CT. However, most studies on automatic liver lesion segmentation have focused on CT. In this study, we present a deep learning-based approach for liver tumor segmentation in the late hepatocellular phase of DCE-MRI, using an anisotropic 3D U-Net architecture and a multi-model training strategy. The 3D architecture improves the segmentation performance compared to a previous study using a 2D U-Net (mean Dice 0.70 vs. 0.65). A further significant improvement is achieved by a multi-model training approach (0.74), which is close to the inter-rater agreement (0.78). A qualitative expert rating of the automatically generated contours confirms the benefit of the multi-model training strategy, with 66 % of contours rated as good or very good, compared to only 43 % when performing a single training. The lesion detection performance with a mean F1-score of 0.59 is inferior to human raters (0.76). Overall, this study shows that correctly detected liver lesions in late-phase DCE-MRI data can be automatically segmented with high accuracy, but the detection, in particular of smaller lesions, can still be improved.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Neoplasias Hepáticas/diagnóstico por imagem , Imageamento por Ressonância Magnética , Redes Neurais de Computação
2.
Cancers (Basel) ; 14(12)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35740659

RESUMO

BACKGROUND: This study investigated whether a machine-learning-based combination of radiomics and clinical parameters was superior to the use of clinical parameters alone in predicting therapy response after three months, and overall survival after six and twelve months, in stage-IV malignant melanoma patients undergoing immunotherapy with PD-1 checkpoint inhibitors and CTLA-4 checkpoint inhibitors. METHODS: A random forest model using clinical parameters (demographic variables and tumor markers = baseline model) was compared to a random forest model using clinical parameters and radiomics (extended model) via repeated 5-fold cross-validation. For this purpose, the baseline computed tomographies of 262 stage-IV malignant melanoma patients treated at a tertiary referral center were identified in the Central Malignant Melanoma Registry, and all visible metastases were three-dimensionally segmented (n = 6404). RESULTS: The extended model was not significantly superior compared to the baseline model for survival prediction after six and twelve months (AUC (95% CI): 0.664 (0.598, 0.729) vs. 0.620 (0.545, 0.692) and AUC (95% CI): 0.600 (0.526, 0.667) vs. 0.588 (0.481, 0.629), respectively). The extended model was not significantly superior compared to the baseline model for response prediction after three months (AUC (95% CI): 0.641 (0.581, 0.700) vs. 0.656 (0.587, 0.719)). CONCLUSIONS: The study indicated a potential, but non-significant, added value of radiomics for six-month and twelve-month survival prediction of stage-IV melanoma patients undergoing immunotherapy.

3.
J Med Imaging (Bellingham) ; 7(6): 064001, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33195733

RESUMO

Purpose: Hippocampus contouring for radiotherapy planning is performed on MR image data due to poor anatomical visibility on computed tomography (CT) data. Deep learning methods for direct CT hippocampus auto-segmentation exist, but use MR-based training contours. We investigate if these can be replaced by CT-based contours without loss in segmentation performance. This would remove the MR not only from inference but also from training. Approach: The hippocampus was contoured by medical experts on MR and CT data of 45 patients. Convolutional neural networks (CNNs) for hippocampus segmentation on CT were trained on CT-based or propagated MR-based contours. In both cases, their predictions were evaluated against the MR-based contours considered as the ground truth. Performance was measured using several metrics, including Dice score, surface distances, and contour Dice score. Bayesian dropout was used to estimate model uncertainty. Results: CNNs trained on propagated MR contours (median Dice 0.67) significantly outperform those trained on CT contours (0.59) and also experts contouring manually on CT (0.59). Differences between the latter two are not significant. Training on MR contours results in lower model uncertainty than training on CT contours. All contouring methods (manual or CNN) on CT perform significantly worse than a CNN segmenting the hippocampus directly on MR (median Dice 0.76). Additional data augmentation by rigid transformations improves the quantitative results but the difference remains significant. Conclusions: CT-based training contours for CT hippocampus segmentation cannot replace propagated MR-based contours without significant loss in performance. However, if MR-based contours are used, the resulting segmentations outperform experts in contouring the hippocampus on CT.

4.
J Med Imaging (Bellingham) ; 6(1): 011005, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30276222

RESUMO

The segmentation of organs at risk is a crucial and time-consuming step in radiotherapy planning. Good automatic methods can significantly reduce the time clinicians have to spend on this task. Due to its variability in shape and low contrast to surrounding structures, segmenting the parotid gland is challenging. Motivated by the recent success of deep learning, we study the use of two-dimensional (2-D), 2-D ensemble, and three-dimensional (3-D) U-Nets for segmentation. The mean Dice similarity to ground truth is ∼ 0.83 for all three models. A patch-based approach for class balancing seems promising for false-positive reduction. The 2-D ensemble and 3-D U-Net are applied to the test data of the 2015 MICCAI challenge on head and neck autosegmentation. Both deep learning methods generalize well onto independent data (Dice 0.865 and 0.88) and are superior to a selection of model- and atlas-based methods with respect to the Dice coefficient. Since appropriate reference annotations are essential for training but often difficult and expensive to obtain, it is important to know how many samples are needed for training. We evaluate the performance after training with different-sized training sets and observe no significant increase in the Dice coefficient for more than 250 training cases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...