Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 28(2): 2091-2106, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-32121907

RESUMO

We report the measurement of the frequency noise power spectral density (PSD) of a Terahertz (THz) molecular laser (ML) pumped by a mid-infrared (MIR) quantum cascade laser (QCL), and emitting 1 mW at 1.1THz in continuous wave. This is achieved by beating the ML frequency with the 1080th harmonic of the repetition rate of a 1560 nm frequency comb (FC). We find a frequency noise PSD < 10Hz2/Hz (-95dBc/Hz) at 100kHz from the carrier. To demonstrate the effect of the stability of the pump laser on the spectral purity of the THz emission we also measure the frequency noise PSD of a CO2-laser-pumped 2.5THz ML, reaching 0.1Hz2/Hz (-105dBc/Hz) at 40kHz from the carrier, limited by the frequency noise of the FC harmonic. Finally, we show that it is possible to actively phase-lock the QCL-pumped molecular laser to the FC repetition rate harmonic by controlling the QCL current, demonstrating a sub-Hz linewidth.

2.
Opt Lett ; 42(6): 1068-1071, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28295094

RESUMO

Attosecond spectroscopy and precision frequency metrology depend on the stabilization of the carrier-envelope phase (CEP) of mode-locked lasers. Unfortunately, the phase of only a few types of lasers can be stabilized to jitters in the few-hundred millirad range. In a comparative experimental study, we analyze a femtosecond Ti:sapphire laser and three mode-locked fiber lasers. We numerically demodulate recorded time series of the free-running carrier-envelope beat note. Our analysis indicates a correlation between amplitude and frequency fluctuations at low Fourier frequencies for essentially all lasers investigated. While this correlation typically rolls off at frequencies beyond 100 kHz, we see clear indications for a broadband coupling mechanism in one of the fiber lasers. We suspect that the observed coupling mechanism acts to transfer intracavity power fluctuations into excess phase noise. This coupling mechanism is related to the mode-locking mechanism employed and not to the gain medium itself. We further verify this hypothesis by numerical simulations, which identify resonances of the saturable absorber mirror as a possible explanation for the coupling mechanism. Finally, we discuss how to avoid a detrimental influence of such resonances.

3.
Opt Express ; 23(26): 33270-94, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26831993

RESUMO

We present an experimental investigation of the multimode dynamics and the coherence of terahertz quantum cascade lasers emitting over a spectral bandwidth of ~1THz. The devices are studied in free-running and under direct RF modulation. Depending on the pump current we observe different regimes of operation, where RF spectra displaying single and multiple narrow beat-note signals alternate with spectra showing a single beat-note characterized by an intense phase-noise, extending over a bandwidth up to a few GHz. We investigate the relation between this phase-noise and the dynamics of the THz modes through the electro-optic sampling of the laser emission. We find that when the phase-noise is large, the laser operates in an unstable regime where the lasing modes are incoherent. Under RF modulation of the laser current such instability can be suppressed and the modes coherence recovered, while, simultaneously, generating a strong broadening of the THz emission spectrum.

4.
Phys Rev Lett ; 106(13): 130506, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21517367

RESUMO

We report the creation of Greenberger-Horne-Zeilinger states with up to 14 qubits. By investigating the coherence of up to 8 ions over time, we observe a decay proportional to the square of the number of qubits. The observed decay agrees with a theoretical model which assumes a system affected by correlated, Gaussian phase noise. This model holds for the majority of current experimental systems developed towards quantum computation and quantum metrology.

5.
Science ; 304(5676): 1478-80, 2004 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-15178795

RESUMO

We report the deterministic creation of maximally entangled three-qubit states-specifically the Greenberger-Horne-Zeilinger (GHZ) state and the W state-with a trapped-ion quantum computer. We read out one of the qubits selectively and show how GHZ and W states are affected by this local measurement. Additionally, we demonstrate conditional operations controlled by the results from reading out one qubit. Tripartite entanglement is deterministically transformed into bipartite entanglement by local operations only. These operations are the measurement of one qubit of a GHZ state in a rotated basis and, conditioned on this measurement result, the application of single-qubit rotations.

6.
Philos Trans A Math Phys Eng Sci ; 361(1808): 1375-89, 2003 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-12869314

RESUMO

Microchip traps provide a promising approach to quantum information processing and communication (QIPC) with neutral atoms: strong and complex potentials can be produced for acting on the qubit atoms, and the potentials can be scaled to higher qubit numbers by virtue of the microfabrication process. We describe experimental results that are relevant to use in QIPC, such as the transport of Bose-Einstein-condensed atomic ensembles along the chip surface with the help of a magnetic conveyor belt. The second part of the paper is devoted to single-atom detection on the chip.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...