Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 927: 171959, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38537816

RESUMO

Browning of freshwaters, mainly caused by increased terrestrial organic carbon loading, has been widely studied during the last decades. However, there are still uncertainties regarding both the extent of browning in different aquatic ecosystems and the actual importance of different driving forces and mechanisms. To refine understanding of the extent and causes of browning and its temporal variation, we gathered a comprehensive dataset including 746 Finnish water quality monitoring stations representing various waterbody types: streams, rivers, lakes, and coastal waters. Monotonic trend analyses revealed that TOC concentrations increased in all waterbody types during the study period from 1990 to 2020, whereas non-linear trends indicated that upward trends in TOC concentrations have substantially decreased since the mid-2000s. However, despite the upward trends levelling off, non-linear analyses also indicated decreases in TOC concentrations at only a few stations. As a result, the TOC contents of the majority of Finnish waterbody types in 2020 were at a higher level than in 1990. To examine the driving forces of increasing TOC concentrations, we selected 100 riverine catchments and linked the detected trends to 24 different drivers, including both hydrometeorological and catchment characteristics. The increased TOC concentrations in surface waters could be connected to diverse human impacts: hydrometeorological variables impacted by climate change, decreased acidic deposition, and land use in terms of peatland drainage. The importance of increased temperatures was emphasized, and its role as a driver of increased leaching of organic carbon in the forthcoming years is expected to grow with climate change.

2.
Ecol Appl ; 33(5): e2856, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37087599

RESUMO

Browning of surface waters, also known as brownification, is a process of decreasing water transparency, particularly in boreal lakes surrounded by intensively managed forests and wetlands. In this paper, we review the ecological consequences and ecosystem-based management (EBM) of browning through a systematic review approach and adopt an interdisciplinary approach to formulating new governance of this complex phenomenon. To understand the effects of browning on the recreational value of freshwaters, we present primary survey data on public perceptions of recreational fishing tourists on water quality in Finland. We identify a need to develop EBM beyond the EU's Water Framework Directive (WFD) to fully account for the extensive implications of browning. We also highlight the need for a better understanding of the within-lake microbial processes to estimate the browning-associated changes in the greenhouse gas balance of lakes. Tourist perceptions of the quality of waterbodies in Finland were largely in agreement with the general proportion of waterbodies classified in a good or excellent ecological status class, but these perceptions may be detached from biological quality assessment criteria. Consequently, we suggest that the EBM of inland waters should improve the utilization of information on not only biogeochemical processes but also users' perspectives on aquatic ecosystems beyond the EU WFD.


Assuntos
Ecossistema , Lagos , Opinião Pública , Finlândia , Qualidade da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...