Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 294(27): 10698-10707, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31152059

RESUMO

Fatty acid esters of hydroxy fatty acids (FAHFAs) are a recently discovered class of biologically active lipids. Here we identify the linoleic acid ester of 13-hydroxy linoleic acid (13-LAHLA) as an anti-inflammatory lipid. An oat oil fraction and FAHFA-enriched extract from this fraction showed anti-inflammatory activity in a lipopolysaccharide-induced cytokine secretion assay. Structural studies identified three LAHLA isomers (15-, 13-, and 9-LAHLA) as being the most abundant FAHFAs in the oat oil fraction. Of these LAHLAs, 13-LAHLA is the most abundant LAHLA isomer in human serum after ingestion of liposomes made of fractionated oat oil, and it is also the most abundant endogenous LAHLA in mouse and human adipose tissue. As a result, we chemically synthesized 13-LAHLA for biological assays. 13-LAHLA suppresses lipopolysaccharide-stimulated secretion of cytokines and expression of pro-inflammatory genes. These studies identify LAHLAs as an evolutionarily conserved lipid with anti-inflammatory activity in mammalian cells.


Assuntos
Anti-Inflamatórios/química , Avena/química , Ésteres/química , Ácidos Linoleicos/química , Tecido Adiposo/química , Tecido Adiposo/metabolismo , Animais , Anti-Inflamatórios/análise , Anti-Inflamatórios/farmacologia , Avena/metabolismo , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Citocinas/metabolismo , Humanos , Lipopolissacarídeos/toxicidade , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Espectrometria de Massas , Camundongos , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Células RAW 264.7 , Estereoisomerismo
2.
Anal Chem ; 90(8): 5358-5365, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29578702

RESUMO

Fatty acid esters of hydroxy fatty acids (FAHFAs) are a recently discovered class of endogenous lipids with antidiabetic and anti-inflammatory activities. Interest in these lipids is due to their unique biological activites and the observation that insulin-resistant people have lower palmitic acid esters of hydroxystearic acid (PAHSA) levels, suggesting that a FAHFA deficiency may contribute to metabolic disease. Rigorous testing of this hypothesis will require the measurement of many clinical samples; however, current analytical workflows are too slow to enable samples to be analyzed quickly. Here we describe the development of a significantly faster workflow to measure FAHFAs that optimizes the fractionation and chromatography of these lipids. We can measure FAHFAs in 30 min with this new protocol versus 90 min using the older protocol with comparable performance in regioisomer detection and quantitation. We also discovered through this optimization that oleic acid esters of hydroxystearic acids (OAHSAs), another family of FAHFAs, have a much lower background signal than PAHSAs, which makes them easier to measure. Our faster workflow was able to quantify changes in PAHSAs and OAHSAs in mouse tissues and human plasma, highlighting the potential of this protocol for basic and clinical applications.


Assuntos
Ésteres/análise , Ácidos Graxos/análise , Cromatografia Líquida , Espectrometria de Massas , Estrutura Molecular , Extração em Fase Sólida
3.
Food Nutr Res ; 582014.
Artigo em Inglês | MEDLINE | ID: mdl-25317122

RESUMO

BACKGROUND: The composition and surface structure of dietary lipids influence their intestinal degradation. Intake of liposomes made of fractionated oat oil (LOO) is suggested to affect the digestion process and postprandial lipemia and also induce satiety. OBJECTIVE: In the present study, the metabolic effects on plasma lipids and gut hormones related to satiety were investigated in healthy individuals after intake of LOO, with dairy lipids as placebo. DESIGN: Two blinded randomized studies with crossover design were performed. In the first study, 19 subjects consumed 35 g lipids from LOO or yoghurt in a breakfast meal. In a follow-up study, 15 women consumed 14 or 1.8 g lipids from LOO mixed in yoghurt. Blood samples were analyzed for plasma lipids, insulin, glucose, and intestinal hormones CCK, PYY, GLP-1, and GLP-2 before and four times after the meal. Subjective analysis of satiety was measured using a visual analog scale questionnaire. Participants recorded their food intake during the rest of the day. RESULTS: Intake of 35 and 14 g lipids from LOO significantly increased plasma concentrations of CCK, GLP-1, GLP-2, and PYY postprandially. This coincided with a prolonged elevation of triglycerides and large cholesterol-containing particles. Non-esterified fatty acids decreased after intake of 14 and 1.8 g lipids from LOO. The subjective sensation of satiety in women was increased 7 h after intake of 35 g lipids from LOO without any difference in food intake. Our results indicate that intake of 14 g lipids from LOO at breakfast substantially reduced energy intake during the rest of the day. CONCLUSIONS: This study suggests that intake of LOO prolong lipid digestion, affect postprandial plasma lipids and have an effect on satiety. The effect of LOO on GLP-2 indicates that intake of LOO also improve gut health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...