Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Sci Food ; 8(1): 21, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615055

RESUMO

Moringa oleifera Lam. has become one of the major new superfoods commonly available in the aisles of bio-shops and health-food sections in supermarkets of North America and Europe. While most of these products appear under the generic and scientifically inconclusive term "Moringa", the European Union, so far, has allowed commercialisation for the use in food and feed for M. oleifera only. M. oleifera is indigenous to India and South Asia, but large-scale cultivation of this species has spread to the tropical regions on all continents, with a strong focus on Africa, leading to a high risk of admixture with species like M. stenopetala (Baker f.) Cufod. that is native to Africa. In the present study, we have characterised six species of Moringa in order to develop a simple and robust authentication method for commercial products. While the plants can be discriminated based on the pinnation of the leaves, this does not work for processed samples. As alternative, we use the plastidic markers psbA-trnH igs and ycf1b to discern different species of Moringa and develop a diagnostic duplex-PCR that clearly differentiates M. oleifera from other Moringa species. This DNA-based diagnostic assay that does not rely on sequencing was validated with commercial products of "Moringa" (including teas, powders, or capsules). Our method provides a robust assay to detect adulterations, which are economically profitable for costly superfood products such as "Moringa".

2.
PLoS One ; 18(11): e0292275, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37967132

RESUMO

Reliable identification of plant species in the digestive tract of a deceased animal often represents the major key to diagnose a lethal intoxication with poisonous plants in veterinary pathology. In many cases, identification of the species is challenging or even impossible because the diagnostic morphological features have been degraded, and because the interpretation of such features requires a considerable expertise in plant anatomy and biodiversity. The use of DNA barcoding markers can support or even replace classical morphological assessment. While these markers have been widely used for plant taxonomy, their forensic application to clarify causes of animal poisoning is novel. In addition, we use specific single-nucleotide polymorphisms as fingerprints. This allows for a clear decision even in cases, where the conventionally used statistical e-values remain ambiguous. In the current work, we explore the feasibility of this strategy in a couple of exemplary cases, either in concert with anatomical diagnostics, or in cases where visual species identification is not possible, or where chemical toxin detection methods are not well established, complex, time consuming and expensive.


Assuntos
Código de Barras de DNA Taxonômico , Intoxicação por Plantas , Animais , Código de Barras de DNA Taxonômico/métodos , DNA/genética , Plantas Tóxicas , Intoxicação por Plantas/diagnóstico , Intoxicação por Plantas/genética , Intoxicação por Plantas/veterinária , Medicina Legal , Marcadores Genéticos , DNA de Plantas/genética , Mamíferos/genética
3.
Front Pharmacol ; 11: 876, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32581819

RESUMO

Herbal products are marketed and used around the globe for their claimed or expected health benefits, but their increasing demand has resulted in a proportionally increase of their accidental contamination or intentional adulteration, as already confirmed with DNA-based methods. Microscopy is a traditional pharmacopoeial method used for plant identification and we systematically searched for peer-reviewed publications to document its potential and limitations to authenticate herbal medicines and food supplements commercially available on the global market. The overall authenticity of 508 microscopically authenticated herbal products, sold in 13 countries, was 59%, while the rest of 41% were found to be adulterated. This problem was extending over all continents. At the national level, there were conspicuous differences, even between neighboring countries. These microscopically authenticated commercial herbal products confirm that different magnifying instruments can be used to authenticate crude or processed herbal products traded in the global marketplace. The reviewed publications report the successful use of different magnifying instruments, single or in combinations with a second one, with or without a chemical or DNA-based technique. Microscopy is therefore a rapid and cost-efficient method, and can cope with mixtures and impurities. However, it has limited applicability for highly processed samples. Microscopic authentication of commercial herbal products will therefore contribute to raise public awareness for the extent of adulteration and the need to safeguard consumer safety against the challenges of globalization.

4.
PeerJ ; 4: e2781, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27957401

RESUMO

BACKGROUND: Names used in ingredient lists of food products are trivial and in their nature rarely precise. The most recent scientific interpretation of the term bamboo (Bambusoideae, Poaceae) comprises over 1,600 distinct species. In the European Union only few of these exotic species are well known sources for food ingredients (i.e., bamboo sprouts) and are thus not considered novel foods, which would require safety assessments before marketing of corresponding products. In contrast, the use of bamboo leaves and their taxonomic origin is mostly unclear. However, products containing bamboo leaves are currently marketed. METHODS: We analysed bamboo species and tea products containing bamboo leaves using anatomical leaf characters and DNA sequence data. To reduce taxonomic complexity associated with the term bamboo, we used a phylogenetic framework to trace the origin of DNA from commercially available bamboo leaves within the bambusoid subfamily. For authentication purposes, we introduced a simple PCR based test distinguishing genuine bamboo from other leaf components and assessed the diagnostic potential of rbcL and matK to resolve taxonomic entities within the bamboo subfamily and tribes. RESULTS: Based on anatomical and DNA data we were able to trace the taxonomic origin of bamboo leaves used in products to the genera Phyllostachys and Pseudosasa from the temperate "woody" bamboo tribe (Arundinarieae). Currently available rbcL and matK sequence data allow the character based diagnosis of 80% of represented bamboo genera. We detected adulteration by carnation in four of eight tea products and, after adapting our objectives, could trace the taxonomic origin of the adulterant to Dianthus chinensis (Caryophyllaceae), a well known traditional Chinese medicine with counter indications for pregnant women.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...