Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Neuropathol ; 147(1): 75, 2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656399

RESUMO

In multiple sclerosis (MS), persisting disability can occur independent of relapse activity or development of new central nervous system (CNS) inflammatory lesions, termed chronic progression. This process occurs early and it is mostly driven by cells within the CNS. One promising strategy to control progression of MS is the inhibition of the enzyme Bruton's tyrosine kinase (BTK), which is centrally involved in the activation of both B cells and myeloid cells, such as macrophages and microglia. The benefit of BTK inhibition by evobrutinib was shown as we observed reduced pro-inflammatory activation of microglia when treating chronic experimental autoimmune encephalomyelitis (EAE) or following the adoptive transfer of activated T cells. Additionally, in a model of toxic demyelination, evobrutinib-mediated BTK inhibition promoted the clearance of myelin debris by microglia, leading to an accelerated remyelination. These findings highlight that BTK inhibition has the potential to counteract underlying chronic progression of MS.


Assuntos
Tirosina Quinase da Agamaglobulinemia , Encefalomielite Autoimune Experimental , Microglia , Bainha de Mielina , Piperidinas , Pirimidinas , Animais , Feminino , Camundongos , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Tirosina Quinase da Agamaglobulinemia/metabolismo , Compostos de Bifenilo/farmacologia , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/patologia , Camundongos Endogâmicos C57BL , Microglia/patologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Bainha de Mielina/patologia , Bainha de Mielina/metabolismo , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Remielinização/fisiologia , Remielinização/efeitos dos fármacos
2.
J Innate Immun ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38569474

RESUMO

INTRODUCTION: Streptococcus pneumoniae is the most common cause of bacterial meningitis and meningoencephalitis in humans. The bacterium produces numerous virulence determinants, among them hydrogen peroxide (H2O2) and pneumolysin (Ply), which contribute to bacterial cytotoxicity. Microglia, the resident phagocytes in the brain, are distinct from other macrophages, and we thus compared their susceptibility to pneumococcal toxicity and their ability to phagocytose pneumococci with those of bone marrow-derived macrophages (BMDM). METHODS: Microglia and BMDM were co-incubated with S. pneumoniae D39 to analyze survival of phagocytes by fluorescence microscopy, bacterial growth by quantitative plating, and phagocytosis by an antibiotic protection assay. Ply was detected by hemolysis assay and Western blot analysis. RESULTS: We found that microglia were killed during pneumococcal infection with a wild-type and an isogenic ply-deficient mutant, whereas viability of BMDM was not affected by pneumococci. Treatment with recombinant Ply showed a dose-dependent cytotoxic effect on microglia and BMDM. However, high concentrations of recombinant Ply were required and under the chosen experimental conditions, Ply was not detectable in the supernatant during infection of microglia. Inactivation of H2O2 by exogenously added catalase abolished its cytotoxic effect. Consequently, infection of microglia with pneumococci deficient for the pyruvate oxidase SpxB, primarily producing H2O2, resulted in reduced killing of microglia. CONCLUSION: Taken together, in the absence of Ply, H2O2 caused cell death in primary phagocytes in concentrations produced by pneumococci.

3.
Artigo em Inglês | MEDLINE | ID: mdl-37072216

RESUMO

OBJECTIVES: Natalizumab (NTZ), a monoclonal antibody against very late antigen-4 (VLA-4), is one of the most efficient therapies to prevent acute relapses in multiple sclerosis (MS). VLA-4 is the key adhesion molecule for peripheral immune cells, especially lymphocytes to enter the CNS. While its blockade thus virtually abrogates CNS infiltration of these cells, long-term exposure to natalizumab may also affect immune cell function. METHODS: In this study, we report that in patients with MS, NTZ treatment is associated with an enhanced activation status of peripheral monocytes. RESULTS: Expression of 2 independent activation markers, CD69 and CD150, was significantly higher on blood monocytes from NTZ-treated patients when compared with those from matched untreated patients with MS, while other properties such as cytokine production remained unchanged. DISCUSSION: These findings consolidate the concept that peripheral immune cells remain fully competent on NTZ treatment, an excellent asset rare among MS treatments. However, they also suggest that NTZ may exert nondesirable effects on the progressive aspect of MS, where myeloid cells and their chronic activation are attributed a prominent pathophysiologic role.


Assuntos
Esclerose Múltipla , Humanos , Natalizumab/farmacologia , Esclerose Múltipla/tratamento farmacológico , Integrina alfa4beta1/metabolismo , Monócitos
4.
Acta Neuropathol ; 145(4): 461-477, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36854993

RESUMO

B cells contribute to chronic inflammatory conditions as source of antibody-secreting plasma cells and as antigen-presenting cells activating T cells, making anti-CD20-mediated B cell depletion a widely used therapeutic option. B cells or B cell subsets may, however, exert regulatory effects, while to date, the immunological and/or clinical impact of these observations remained unclear. We found that in multiple sclerosis (MS) patients, B cells contain regulatory features and that their removal enhanced activity of monocytes. Using a co-culture system, we identified B cell-provided interleukin (IL)-10 as key factor in controlling pro-inflammatory activity of peripheral myeloid cells as well as microglia. Depleting B cells via anti-CD20 in a mouse model of MS unleashed the activity of myeloid cells and microglia and accelerated disease severity; in contrast, adoptive transfer of IL-10-providing B cells restored in vivo control of central nervous system (CNS) macrophages and microglia and reversed clinical exacerbation. These findings suggest that B cells exert meaningful regulatory properties, which should be considered when designing novel B cell-directed agents.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Camundongos , Autoimunidade , Sistema Nervoso Central , Interleucina-10/uso terapêutico , Macrófagos , Camundongos Endogâmicos C57BL , Microglia
5.
Ann Neurol ; 90(5): 834-839, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34516013

RESUMO

The frequency of CD20+ T cells was reported to be increased in several inflammatory conditions. We report that in patients with multiple sclerosis (MS), CD20+ T cells display a distinct proinflammatory phenotype with pathogenic properties. Anti-CD20 treatment virtually extinguished CD20+ T cells, which might explain its broad effectiveness. Dimethyl fumarate dampened activity of differentiated CD20+ T cells, whereas fingolimod reduced their abundance only as part of its overall T cell suppressive capacity. Natalizumab increased the frequency of CD20+ effector T cells. Widely used MS therapeutics affect this proinflammatory T cell subset with assumed pathogenic potential in a surprisingly differential manner. ANN NEUROL 2021 ANN NEUROL 2021;90:834-839.


Assuntos
Antígenos CD20/efeitos dos fármacos , Esclerose Múltipla/tratamento farmacológico , Natalizumab/farmacologia , Subpopulações de Linfócitos T/efeitos dos fármacos , Fumarato de Dimetilo/farmacologia , Cloridrato de Fingolimode/farmacologia , Humanos , Esclerose Múltipla/imunologia
6.
Brain Pathol ; 31(6): e12969, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33955606

RESUMO

Natalizumab, a recombinant humanized monoclonal antibody directed against the α4 subunit of the integrins α4ß1 and α4ß7, has been approved for the treatment of active relapsing-remitting MS. Although natalizumab is a highly beneficial drug that effectively reduces the risk of sustained disability progression and the rate of clinical relapses, some patients do not respond to it, and some are at higher risk of developing progressive multifocal leukoencephalopathy (PML). The histopathological effects after natalizumab therapy are still unknown. We, therefore, performed a detailed histological characterization of the CNS inflammatory cell infiltrate of 24 brain specimens from natalizumab treated patients, consisting of 20 biopsies and 4 autopsies and 21 MS controls. To complement the analysis, immune cells in blood and cerebrospinal fluid (CSF) of 30 natalizumab-treated patients and 42 MS controls were quantified by flow cytometry. Inflammatory infiltrates within lesions were mainly composed of T cells and macrophages, some B cells, plasma cells, and dendritic cells. There was no significant difference in the numbers of T cells or macrophages and microglial cells in lesions of natalizumab-treated patients as compared to controls. A shift towards cytotoxic T cells of a memory phenotype was observed in the CSF. Plasma cells were significantly increased in active demyelinating lesions of natalizumab-treated patients, but no correlation to clinical disability was observed. Dendritic cells within lesions were found to be reduced with longer ongoing therapy duration. Our findings suggest that natalizumab does not completely prevent immune cells from entering the CNS and is associated with an accumulation of plasma cells, the pathogenic and clinical significance of which is not known. As B cells are considered to serve as a reservoir of the JC virus, the observed plasma cell accumulation and reduction in dendritic cells in the CNS of natalizumab-treated patients may potentially play a role in PML development.


Assuntos
Fatores Imunológicos/efeitos adversos , Leucoencefalopatia Multifocal Progressiva/induzido quimicamente , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Natalizumab/efeitos adversos , Linfócitos T/patologia , Adulto , Feminino , Humanos , Fatores Imunológicos/uso terapêutico , Leucoencefalopatia Multifocal Progressiva/patologia , Macrófagos/patologia , Masculino , Microglia/patologia , Pessoa de Meia-Idade , Natalizumab/uso terapêutico , Estudos Retrospectivos , Adulto Jovem
7.
Int J Mol Sci ; 22(7)2021 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33801644

RESUMO

Therapeutically controlling chronic progression in multiple sclerosis (MS) remains a major challenge. MS progression is defined as a steady loss of parenchymal and functional integrity of the central nervous system (CNS), occurring independent of relapses or focal, magnetic resonance imaging (MRI)-detectable inflammatory lesions. While it clinically surfaces in primary or secondary progressive MS, it is assumed to be an integral component of MS from the very beginning. The exact mechanisms causing progression are still unknown, although evolving evidence suggests that they may substantially differ from those driving relapse biology. To date, progression is assumed to be caused by an interplay of CNS-resident cells and CNS-trapped hematopoietic cells. On the CNS-resident cell side, microglia that are phenotypically and functionally related to cells of the monocyte/macrophage lineage may play a key role. Microglia function is highly transformable. Depending on their molecular signature, microglia can trigger neurotoxic pathways leading to neurodegeneration, or alternatively exert important roles in promoting neuroprotection, downregulation of inflammation, and stimulation of repair. Accordingly, to understand and to possibly alter the role of microglial activation during MS disease progression may provide a unique opportunity for the development of suitable, more effective therapeutics. This review focuses on the current understanding of the role of microglia during disease progression of MS and discusses possible targets for therapeutic intervention.


Assuntos
Microglia/fisiologia , Esclerose Múltipla/fisiopatologia , Esclerose Múltipla/terapia , Tirosina Quinase da Agamaglobulinemia/metabolismo , Animais , Anticorpos Monoclonais Humanizados/uso terapêutico , Biomarcadores/metabolismo , Receptor 1 de Quimiocina CX3C/metabolismo , Progressão da Doença , Regulação para Baixo , Humanos , Inflamação , Lisofosfolipídeos/metabolismo , Macrófagos/metabolismo , Imageamento por Ressonância Magnética , Glicoproteínas de Membrana/metabolismo , Monócitos/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Fenótipo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Receptores Imunológicos/metabolismo , Receptores Purinérgicos P2X/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo
8.
Acta Neuropathol ; 140(4): 535-548, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32761407

RESUMO

Anti-CD20-mediated B-cell depletion effectively reduces acute multiple sclerosis (MS) flares. Recent data shows that antibody-mediated extinction of B cells as a lasting immune suppression, harbors the risk of developing humoral deficiencies over time. Accordingly, more selective, durable and reversible B-cell-directed MS therapies are needed. We here tested inhibition of Bruton's tyrosine kinase (BTK), an enzyme centrally involved in B-cell receptor signaling, as the most promising approach in this direction. Using mouse models of MS, we determined that evobrutinib, the first BTK inhibiting molecule being developed, dose-dependently inhibited antigen-triggered activation and maturation of B cells as well as their release of pro-inflammatory cytokines. Most importantly, evobrutinib treatment functionally impaired the capacity of B cells to act as antigen-presenting cells for the development of encephalitogenic T cells, resulting in a significantly reduced disease severity in mice. In contrast to anti-CD20, BTK inhibition silenced this key property of B cells in MS without impairing their frequency or functional integrity. In conjunction with a recent phase II trial reporting that evobrutinib is safe and effective in MS, our mechanistic data highlight therapeutic BTK inhibition as a landmark towards selectively interfering with MS-driving B-cell properties.


Assuntos
Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Linfócitos B/efeitos dos fármacos , Encefalomielite Autoimune Experimental/imunologia , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Encefalomielite Autoimune Experimental/enzimologia , Encefalomielite Autoimune Experimental/patologia , Humanos , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
9.
Artigo em Inglês | MEDLINE | ID: mdl-32184341

RESUMO

OBJECTIVE: We examined the effect of glatiramer acetate (GA) on B-cell maturation, differentiation, and antigen presentation in MS and experimental autoimmune encephalomyelitis (EAE). METHODS: A cross-sectional study of blood samples from 20 GA-treated and 18 untreated patients with MS was performed by flow cytometry; 6 GA-treated patients with MS were analyzed longitudinally. GA-mediated effects on B-cell antigen-presenting function were investigated in EAE, or, alternatively, B cells were treated with GA in vitro using vehicle as a control. RESULTS: In MS, GA diminished transitional B-cell and plasmablast frequency, downregulated CD69, CD25, and CD95 expression, and decreased TNF-α production, whereas IL-10 secretion and MHC Class II expression were increased. In EAE, we observed an equivalent dampening of proinflammatory B-cell properties and an enhanced expression of MHC Class II. When used as antigen-presenting cells for activation of naive T cells, GA-treated B cells promoted development of regulatory T cells, whereas proinflammatory T-cell differentiation was diminished. CONCLUSIONS: GA immune modulates B-cell function in EAE and MS and efficiently interferes with pathogenic B cell-T cell interaction.


Assuntos
Células Apresentadoras de Antígenos/efeitos dos fármacos , Linfócitos B/efeitos dos fármacos , Encefalomielite Autoimune Experimental/tratamento farmacológico , Acetato de Glatiramer/farmacologia , Fatores Imunológicos/farmacologia , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Adulto , Animais , Estudos Transversais , Encefalomielite Autoimune Experimental/sangue , Feminino , Citometria de Fluxo , Humanos , Estudos Longitudinais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/sangue
10.
Front Immunol ; 11: 301, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32161591

RESUMO

The exact cause of multiple sclerosis (MS) is unknown; however, it is considered to be an inflammatory disease of the central nervous system (CNS) triggered by a combination of both environmental and genetic factors. Vitamin D deficiency is also discussed as a possible disease-promoting factor in MS, as low vitamin D status is associated with increased formation of CNS lesions, elevated number of relapses and accelerated disease progression. However, it remains unclear whether this association is causal and related and most importantly, whether vitamin D supplementation in MS is of direct therapeutic benefit. Recently, we could show that in a murine model of MS, administration of a moderate vitamin D dose was of clinical benefit, while excessive vitamin D supplementation had a negative effect on disease severity. Of note, disease exacerbation was associated with high-dose vitamin D caused secondary hypercalcemia. Mechanistically dissecting this outcome, we found that hypercalcemia independent of vitamin D similarly triggered activation of disease-perpetuating T cells. These findings caution that vitamin D should be supplemented in a controlled and moderate manner in patients with MS and concomitantly highlight calcium as a novel potential MS risk factor by itself. In this review, we will summarize the current evidence from animal and clinical studies aiming to assess whether vitamin D may be of benefit in patients with MS. Furthermore, we will discuss any possible secondary effects of vitamin D with a particular focus on the role of calcium on immune cells and in the pathogenesis of CNS demyelinating disease.


Assuntos
Doenças do Sistema Nervoso Central/epidemiologia , Hipercalcemia/complicações , Vitamina D/metabolismo , Animais , Autoimunidade , Cálcio/metabolismo , Sinalização do Cálcio , Sistema Nervoso Central , Doenças Desmielinizantes , Suplementos Nutricionais , Humanos , Esclerose Múltipla/epidemiologia , Fatores de Risco , Linfócitos T , Deficiência de Vitamina D
13.
Brain ; 142(9): 2737-2755, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31302671

RESUMO

Poor vitamin D status is associated with a higher relapse rate and earlier disability in multiple sclerosis. Based on these associations, patients with multiple sclerosis are frequently supplemented with the vitamin D precursor cholecalciferol, although it is unclear whether this regimen is of therapeutic benefit. To model consequences of this common practice, mice were fed for more than 3 months with a low, medium or high dose of cholecalciferol, representative of vitamin D deficiency, modest and disproportionally high supplementation, respectively, in patients with multiple sclerosis. Compared to vitamin D-deprived mice, its moderate supplementation reduced the severity of subsequent experimental autoimmune encephalomyelitis, which was associated with an expansion of regulatory T cells. Direct exposure of murine or human T cells to vitamin D metabolites inhibited their activation. In contrast, mice with 25-(OH) vitamin D levels above 200 nmol/l developed fulminant experimental autoimmune encephalomyelitis with massive CNS infiltration of activated myeloid cells, Th1 and Th17 cells. When dissecting this unexpected outcome, we observed that high, but not medium dose vitamin D had caused mild hypercalcaemia, which rendered T cells more prone to pro-inflammatory activation. Exposing murine or human T cells to equivalent calcium concentrations in vitro enhanced its influx, triggering activation, upregulation of pro-inflammatory gene products and enhanced transmigration across a blood-brain barrier model. These findings suggest that vitamin D at moderate levels may exert a direct regulatory effect, while continuous high dose vitamin D treatment could trigger multiple sclerosis disease activity by raising mean levels of T-cell excitatory calcium.


Assuntos
Autoimunidade/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Subpopulações de Linfócitos T/efeitos dos fármacos , Vitamina D/toxicidade , Animais , Barreira Hematoencefálica , Calcifediol/sangue , Cálcio/sangue , Cálcio/uso terapêutico , Cálcio/toxicidade , Cloretos/sangue , Colecalciferol/efeitos adversos , Colecalciferol/uso terapêutico , Relação Dose-Resposta a Droga , Encefalomielite Autoimune Experimental/imunologia , Feminino , Humanos , Hipercalcemia/induzido quimicamente , Hipercalcemia/imunologia , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Esclerose Múltipla/complicações , Esclerose Múltipla/imunologia , Fosfatos/sangue , Sódio/sangue , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Vitamina D/sangue , Deficiência de Vitamina D/complicações , Deficiência de Vitamina D/tratamento farmacológico , Deficiência de Vitamina D/imunologia
14.
Int J Mol Sci ; 20(1)2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30626090

RESUMO

The exact cause of multiple sclerosis (MS) remains elusive. Various factors, however, have been identified that increase an individual's risk of developing this central nervous system (CNS) demyelinating disease and are associated with an acceleration in disease severity. Besides genetic determinants, environmental factors are now established that influence MS, which is of enormous interest, as some of these contributing factors are relatively easy to change. In this regard, a low vitamin D status is associated with an elevated relapse frequency and worsened disease course in patients with MS. The most important question, however, is whether this association is causal or related. That supplementing vitamin D in MS is of direct therapeutic benefit, is still a matter of debate. In this manuscript, we first review the potentially immune modulating mechanisms of vitamin D, followed by a summary of current and ongoing clinical trials intended to assess whether vitamin D supplementation positively influences the outcome of MS. Furthermore, we provide emerging evidence that excessive vitamin D treatment via the T cell-stimulating effect of secondary hypercalcemia, could have negative effects in CNS demyelinating disease. This jointly merges into the balancing concept of a therapeutic window of vitamin D in MS.


Assuntos
Doenças do Sistema Nervoso Central/tratamento farmacológico , Doenças Desmielinizantes/tratamento farmacológico , Suplementos Nutricionais , Vitamina D/uso terapêutico , Animais , Doenças do Sistema Nervoso Central/complicações , Humanos , Hipercalcemia/complicações
15.
Proc Natl Acad Sci U S A ; 115(39): 9773-9778, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30194232

RESUMO

The anti-CD20 antibody ocrelizumab, approved for treatment of multiple sclerosis, leads to rapid elimination of B cells from the blood. The extent of B cell depletion and kinetics of their recovery in different immune compartments is largely unknown. Here, we studied how anti-CD20 treatment influences B cells in bone marrow, blood, lymph nodes, and spleen in models of experimental autoimmune encephalomyelitis (EAE). Anti-CD20 reduced mature B cells in all compartments examined, although a subpopulation of antigen-experienced B cells persisted in splenic follicles. Upon treatment cessation, CD20+ B cells simultaneously repopulated in bone marrow and spleen before their reappearance in blood. In EAE induced by native myelin oligodendrocyte glycoprotein (MOG), a model in which B cells are activated, B cell recovery was characterized by expansion of mature, differentiated cells containing a high frequency of myelin-reactive B cells with restricted B cell receptor gene diversity. Those B cells served as efficient antigen-presenting cells (APCs) for activation of myelin-specific T cells. In MOG peptide-induced EAE, a purely T cell-mediated model that does not require B cells, in contrast, reconstituting B cells exhibited a naive phenotype without efficient APC capacity. Our results demonstrate that distinct subpopulations of B cells differ in their sensitivity to anti-CD20 treatment and suggest that differentiated B cells persisting in secondary lymphoid organs contribute to the recovering B cell pool.


Assuntos
Antígenos CD20/imunologia , Linfócitos B/imunologia , Encefalomielite Autoimune Experimental/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Células da Medula Óssea/imunologia , Encefalomielite Autoimune Experimental/terapia , Linfonodos/citologia , Linfonodos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Bainha de Mielina/imunologia , Baço/citologia , Baço/imunologia
16.
Acta Neuropathol ; 132(1): 43-58, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27022743

RESUMO

In the pathogenesis of central nervous system (CNS) demyelinating disorders, antigen-specific B cells are implicated to act as potent antigen-presenting cells (APC), eliciting waves of inflammatory CNS infiltration. Here, we provide the first evidence that CNS-reactive antibodies (Ab) are similarly capable of initiating an encephalitogenic immune response by targeting endogenous CNS antigen to otherwise inert myeloid APC. In a transgenic mouse model, constitutive production of Ab against myelin oligodendrocyte glycoprotein (MOG) was sufficient to promote spontaneous experimental autoimmune encephalomyelitis (EAE) in the absence of B cells, when mice endogenously contained MOG-recognizing T cells. Adoptive transfer studies corroborated that anti-MOG Ab triggered activation and expansion of peripheral MOG-specific T cells in an Fc-dependent manner, subsequently causing EAE. To evaluate the underlying mechanism, anti-MOG Ab were added to a co-culture of myeloid APC and MOG-specific T cells. At otherwise undetected concentrations, anti-MOG Ab enabled Fc-mediated APC recognition of intact MOG; internalized, processed and presented MOG activated naïve T cells to differentiate in an encephalitogenic manner. In a series of translational experiments, anti-MOG Ab from two patients with an acute flare of CNS inflammation likewise facilitated detection of human MOG. Jointly, these observations highlight Ab-mediated opsonization of endogenous CNS auto-antigen as a novel disease- and/or relapse-triggering mechanism in CNS demyelinating disorders.


Assuntos
Autoanticorpos/imunologia , Linfócitos B/imunologia , Encefalomielite Autoimune Experimental/imunologia , Esclerose Múltipla/imunologia , Glicoproteína Mielina-Oligodendrócito/antagonistas & inibidores , Glicoproteína Mielina-Oligodendrócito/imunologia , Neuromielite Óptica/imunologia , Animais , Técnicas de Cocultura , Feminino , Células HEK293 , Humanos , Imunoglobulina G/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Glicoproteína Mielina-Oligodendrócito/genética , Glicoproteína Mielina-Oligodendrócito/metabolismo , Receptores de IgG/deficiência , Receptores de IgG/genética , Linfócitos T/imunologia
17.
Neuropathol Appl Neurobiol ; 41(6): 814-31, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25641089

RESUMO

AIMS: Natalizumab is a humanized monoclonal antibody specific for CD49d receptors of integrins. It inhibits the entry of inflammatory cells into the central nervous system and is approved for the treatment of relapsing-remitting multiple sclerosis (MS). Several lines of evidence indicate an involvement of B cells and plasma cells in MS pathogenesis. However, treatment with the natalizumab analogon PS/2 immunoglobulin G (IgG) has so far only been investigated in T cell-mediated animal models of MS. Due to the importance of B lineage cells in the pathogenesis of MS, the objective of the present study has thus been to analyse the effects of PS/2 IgG in a mouse model of MS with T and B cell cooperation (OSE mice). METHODS: OSE mice were treated with the natalizumab analogon PS/2 IgG either at disease onset or after peak of disease. Treatment was also performed with PS/2 F(ab')2 fragments. RESULTS: PS/2 IgG treatment improved the clinical outcome and decreased spinal cord demyelination and immune cell infiltration if given early in the disease course. Treatment increased blood leukocytes and resulted in a partial internalization of CD49d in T and B cells. The therapeutic effects of PS/2 IgG injections were independent of the Fc fragment as F(ab')2 injections were equally beneficial. In contrast, PS/2 IgG was not effective when given late in the disease course. CONCLUSIONS: Results indicate that natalizumab may also be beneficial in MS with B cell-driven immunopathogenesis.


Assuntos
Linfócitos B/imunologia , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/patologia , Natalizumab/administração & dosagem , Animais , Sítios de Ligação , Modelos Animais de Doenças , Imunoglobulina G/administração & dosagem , Integrina alfa4/imunologia , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Camundongos , Camundongos Transgênicos , Esclerose Múltipla/imunologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Substância Branca/efeitos dos fármacos , Substância Branca/patologia
18.
Acta Neuropathol ; 123(2): 235-45, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22057786

RESUMO

Natalizumab is an approved medication for highly active multiple sclerosis (MS). Progressive multifocal leukoencephalopathy (PML) may occur as a severe side effect of this drug. Here, we describe pathological and radiological characteristics of immune reconstitution inflammatory syndrome (IRIS), which occurs in natalizumab-associated PML after the cessation of therapy, and we differentiate it from ongoing PML. Brain biopsy tissue and MRI scans from five MS patients with natalizumab-associated PML were analyzed and their histology compared with non-MS PML. Histology showed an extensive CD8-dominated T cell infiltrate and numerous macrophages within lesions, and in nondemyelinated white and grey matter, in four out of five cases. Few or no virally infected cells were found. This was indicative of IRIS as known from HIV patients with PML. Outstandingly high numbers of plasma cells were present as compared to non-MS PML and typical MS lesions. MRI was compatible with IRIS, revealing enlarging lesions with a band-like or speckled contrast enhancement either at the lesion edge or within lesions. Only the fifth patient showed typical PML pathology, with low inflammation and high numbers of virally infected cells. This patient showed a similar interval between drug withdrawal and biopsy (3.5 months) to the rest of the cohort (range 2.5-4 months). MRI could not differentiate between PML-associated IRIS and ongoing PML. We describe in detail the histopathology of IRIS in natalizumab-associated PML. PML-IRIS, ongoing PML infection, and MS exacerbation may be impossible to discern clinically alone. MRI may provide some clues for distinguishing different pathologies that can be differentiated histologically. In our individual cases, biopsy helped to clarify diagnoses in natalizumab-associated PML.


Assuntos
Anticorpos Monoclonais Humanizados/efeitos adversos , Síndrome Inflamatória da Reconstituição Imune/induzido quimicamente , Síndrome Inflamatória da Reconstituição Imune/patologia , Leucoencefalopatia Multifocal Progressiva/induzido quimicamente , Leucoencefalopatia Multifocal Progressiva/patologia , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/patologia , Adulto , Feminino , Humanos , Síndrome Inflamatória da Reconstituição Imune/imunologia , Leucoencefalopatia Multifocal Progressiva/imunologia , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/imunologia , Natalizumab , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...