Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Bot ; 124(1): 27-40, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-30668651

RESUMO

BACKGROUND AND AIMS: Water limitation is an important determinant of the distribution, abundance and diversity of plant species. Yet, little is known about how the response to limiting water supply changes among closely related plant species with distinct ecological preferences. Comparison of the model annual species Arabidopsis thaliana with its close perennial relatives A. lyrata and A. halleri, can help disentangle the molecular and physiological changes contributing to tolerance and avoidance mechanisms, because these species must maintain tolerance and avoidance mechanisms to increase long-term survival, but they are exposed to different levels of water stress and competition in their natural habitat. METHODS: A dry-down experiment was conducted to mimic a period of missing precipitation. The covariation of a progressive decrease in soil water content (SWC) with various physiological and morphological plant traits across a set of representative genotypes in A. thaliana, A. lyrata and A. halleri was quantified. Transcriptome changes to soil dry-down were further monitored. KEY RESULTS: The analysis of trait covariation demonstrates that the three species differ in the strategies they deploy to respond to drought stress. Arabidopsis thaliana showed a drought avoidance reaction but failed to survive wilting. Arabidopsis lyrata efficiently combined avoidance and tolerance mechanisms. In contrast, A. halleri showed some degree of tolerance to wilting but it did not seem to protect itself from the stress imposed by drought. Transcriptome data collected just before plant wilting and after recovery corroborated the phenotypic analysis, with A. lyrata and A. halleri showing a stronger activation of recovery- and stress-related genes, respectively. CONCLUSIONS: The response of the three Arabidopsis species to soil dry-down reveals that they have evolved distinct strategies to face drought stress. These strategic differences are in agreement with the distinct ecological priorities of the stress-tolerant A. lyrata, the competitive A. halleri and the ruderal A. thaliana.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Secas , Fenótipo
2.
Plant Biol (Stuttg) ; 12 Suppl 1: 115-28, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20712627

RESUMO

Arabidopsis thaliana mutants impaired in starch biosynthesis due to defects in either ADP glucose pyrophosphorylase (adg1-1), plastidic phosphoglucose mutase (pgm) or a new allele of plastidic phosphoglucose isomerase (pgi1-2) exhibit substantial activity of glucose-6-phosphate (Glc6P) transport in leaves that is mediated by a Glc6P/phosphate translocator (GPT) of the inner plastid envelope membrane. In contrast to the wild type, GPT2, one of two functional GPT genes of A. thaliana, is strongly induced in these mutants during the light period. The proposed function of the GPT in plastids of non-green tissues is the provision of Glc6P for starch biosynthesis and/or the oxidative pentose phosphate pathway. The function of GPT in photosynthetic tissues, however, remains obscure. The adg1-1 and pgi1-2 mutants were crossed with the gpt2-1 mutant defective in GPT2. Whereas adg1-1/gpt2-1 was starch-free, residual starch could be detected in pgi1-2/gpt2-1 and was confined to stomatal guard cells, bundle sheath cells and root tips, which parallels the reported spatial expression profile of AtGPT1. Glucose content in the cytosolic heteroglycan increased substantially in adg1-1 but decreased in pgi1-2, suggesting that the plastidic Glc6P pool contributes to its biosynthesis. The abundance of GPT2 mRNA correlates with increased levels of soluble sugars, in particular of glucose in leaves, suggesting induction by the sugar-sensing pathway. The possible function of GPT2 in starch-free mutants is discussed in the background of carbon requirement in leaves during the light-dark cycle.


Assuntos
Arabidopsis/metabolismo , Glucose-6-Fosfato/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Plantas/metabolismo , Amido/biossíntese , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Cloroplastos , Técnicas de Inativação de Genes , Teste de Complementação Genética , Glucose/análise , Glucose-1-Fosfato Adenililtransferase/genética , Glucose-6-Fosfato Isomerase/genética , Proteínas de Membrana Transportadoras/genética , Mutagênese Insercional , Mutação , Folhas de Planta/metabolismo , Proteínas de Plantas/genética
3.
Plant Cell ; 13(8): 1907-18, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11487701

RESUMO

Starch is the major storage carbohydrate in higher plants and of considerable importance for the human diet and for numerous technical applications. In addition, starch can be accumulated transiently in chloroplasts as a temporary deposit of carbohydrates during ongoing photosynthesis. This transitory starch has to be mobilized during the subsequent dark period. Mutants defective in starch mobilization are characterized by high starch contents in leaves after prolonged periods of darkness and therefore are termed starch excess (sex) mutants. Here we describe the molecular characterization of the Arabidopsis sex1 mutant that has been proposed to be defective in the export of glucose resulting from hydrolytic starch breakdown. The mutated gene in sex1 was cloned using a map-based cloning approach. By complementation of the mutant, immunological analysis, and analysis of starch phosphorylation, we show that sex1 is defective in the Arabidopsis homolog of the R1 protein and not in the hexose transporter. We propose that the SEX1 protein (R1) functions as an overall regulator of starch mobilization by controlling the phosphate content of starch.


Assuntos
Proteínas de Arabidopsis , Arabidopsis/genética , Cloroplastos/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Mutação , Proteínas de Plantas/genética , Amido/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Arabidopsis/metabolismo , Sequência de Bases , Sítios de Ligação , Primers do DNA , Genes de Plantas , Teste de Complementação Genética , Hidrólise , Dados de Sequência Molecular , Fosforilação , Proteínas de Plantas/química , Homologia de Sequência de Aminoácidos
4.
J Exp Bot ; 52(362): 1785-803, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11520867

RESUMO

To improve the efficiency of CO(2) fixation in C(3) photosynthesis, C(4)-cycle genes were overexpressed in potato and tobacco plants either individually or in combination. Overexpression of the phosphoenolpyruvate carboxylase (PEPC) gene (ppc) from Corynebacterium glutamicum (cppc) or from potato (stppc, deprived of the phosphorylation site) in potato resulted in a 3-6-fold induction of endogenous cytosolic NADP malic enzyme (ME) and an increase in the activities of NAD-ME (3-fold), NADP isocitrate dehydrogenase (ICDH), pyruvate kinase (PK), NADP glycerate-3-P dehydrogenase (NADP-GAPDH), and PEP phosphatase (PEPP). In double transformants overexpressing cppc and chloroplastic NADP-ME from Flaveria pringlei (fpMe1), cytosolic NADP-ME was less induced and pleiotropic effects were diminished. There were no changes in enzyme pattern in single fpMe1 overexpressors. In cppc overexpressors of tobacco, the increase in endogenous cytosolic NADP-ME activity was small and changes in other enzymes were less pronounced. Determinations of the CO(2) compensation point (Gamma*) as well as temperature and oxygen effects on photosynthesis produced variational data suggesting that the desired decline in photorespiration occurred only under certain experimental conditions. Double transformants of potato (cppc/fpMe1) exhibited the most consistent attenuating effect on photorespiration. In contrast, photorespiration in tobacco plants appeared to be diminished most in single cppc overexpressors rather than in double transformants (cppc/fpMe1). In tobacco, introduction of the PEP carboxykinase (PEPCK) gene from the bacterium Sinorhizobium meliloti (pck) had little effect on photosynthetic parameters in single (pck) and double transformants (cppc/pck). In transgenic potato plants, increased PEPC activities resulted in a decline in UV protectants (flavonoids) in single cppc or stppc transformants, but not in double transformants (cppc/fpMe1). PEP provision to the shikimate pathway inside the plastids, from which flavonoids derive, might be restricted only in single PEPC overexpressors.


Assuntos
Malato Desidrogenase/metabolismo , Nicotiana/metabolismo , Fosfoenolpiruvato Carboxilase/metabolismo , Solanum tuberosum/metabolismo , Asteraceae/genética , Dióxido de Carbono/metabolismo , Respiração Celular , Cloroplastos/enzimologia , Clonagem Molecular , Corynebacterium/enzimologia , Corynebacterium/genética , Citosol/enzimologia , Expressão Gênica , Malato Desidrogenase/genética , Fosfoenolpiruvato Carboxilase/genética , Fotoquímica , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Folhas de Planta/enzimologia , Plantas Geneticamente Modificadas , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Sinorhizobium meliloti/genética , Solanum tuberosum/enzimologia , Solanum tuberosum/genética , Nicotiana/enzimologia , Nicotiana/genética , Raios Ultravioleta
5.
Plant J ; 24(3): 285-96, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11069702

RESUMO

The inducible crassulacean acid metabolism (CAM) plant Mesembryanthemum crystallinum accumulates malic acid during the night and converts it to starch during the day via a pathway that, because it is located in different subcellular compartments, depends on specific metabolite transport across membranes. The chloroplast glucose transporter (pGlcT) and three members of the phosphate translocator (PT) family were isolated. After induction of CAM, transcript amounts of the phosphoenolpyruvate (PEP) phosphate translocator (PPT) and the glucose-6-phosphate (Glc6P) phosphate translocator (GPT) genes were increased drastically, while triose phosphate (TP) phosphate translocator (TPT) and the pGlcT transcripts remained unchanged. PPT- and GPT-specific transcripts and transporter activities exhibited a pronounced diurnal variation, displaying the highest amplitude in the light. pGlcT transcripts were elevated towards the end of the light period and at the beginning of the dark period. These findings, combined with diurnal variations of enzyme activities and metabolite contents, helped to elucidate the roles of the PPT, GPT, TPT and pGlcT in CAM. The main function of the PPT is the daytime export from the stroma of PEP generated by pyruvate orthophosphate:dikinase (PPDK). The increased transport activity of GPT in the light suggests a higher requirement for Glc6P import for starch synthesis rather than starch mobilization. Most likely, Glc6P rather than 3-phosphoglycerate or triose phosphates is the main substrate for daytime starch biosynthesis in M. crystallinum plants in which CAM has been induced (CAM-induced), similar to non-green plastids. In the dark, starch is mobilized both phosphorylytically and amylolytically and the products are exported by the GPT, TPT and pGlcT. The transport activities of all three phosphate translocators and the transcript amounts of the pGlcT adapt to changing transport requirements in order to maintain high metabolic fluxes during the diurnal CAM cycle.


Assuntos
Magnoliopsida/metabolismo , Transporte Biológico Ativo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Ritmo Circadiano , Clonagem Molecular , Cinética , Magnoliopsida/genética , Malatos/metabolismo , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas de Ligação a Fosfato , Fosfatos/metabolismo , Plastídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Amido/metabolismo
6.
Mol Gen Genet ; 263(6): 978-86, 2000 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10954083

RESUMO

Screening of transposon-associated mutants of Arabidopsis thaliana for altered starch metabolism resulted in the isolation of a mutant that did not accumulate starch in any tissue or at any developmental stage (starch-free mutant, stf1). Allelism tests with known mutants showed that stf1 represents a new mutant allele of the plastid isoform of the enzyme phosphoglucomutase (PGMp). The mutation was mapped to chromosome 5. An Arabidopsis EST that showed significant homology to the cytosolic isoform of phosphoglucomutase (PGM) from maize was able to complement the mutant phenotype. The Arabidopsis EST was transcribed and translated in vitro and the protein product was efficiently imported into isolated chloroplasts and processed to its mature form. The lack of starch biosynthesis in stf1 is accompanied by the accumulation of soluble sugars. The rate of CO2 assimilation measured in individual leaves was substantially diminished only under conditions of high CO2 and low O2. Remarkably, stf1 exhibits an increase rather than a decrease in total leaf PGM activity, suggesting an induction of the cytosolic isoform(s) in the mutant. The substrate for PGM, glucose 6-phosphate, accumulated in stf1 during the day, resulting in 10-fold higher content than in the wild type at the end of the photoperiod.


Assuntos
Arabidopsis/genética , Fosfoglucomutase/genética , Plastídeos/enzimologia , Amido/metabolismo , Alelos , Sequência de Aminoácidos , Transporte Biológico , Segregação de Cromossomos , Evolução Molecular , Teste de Complementação Genética , Isoenzimas/classificação , Isoenzimas/genética , Dados de Sequência Molecular , Mutagênese Insercional , Fenótipo , Fosfoglucomutase/classificação , Folhas de Planta/enzimologia , Proteínas de Plantas/metabolismo , Homologia de Sequência de Aminoácidos
7.
Anal Biochem ; 281(1): 1-8, 2000 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-10847603

RESUMO

This article describes a method for the enzymatic detection of low-abundant metabolic intermediates in plant extracts via NAD(P)H fluorescence using a microtiter plate reader. The detection of changes in NAD(P)H fluorescence (excitation 340 nm, emission 465 nm) exhibits a high signal-to-noise ratio and is as sensitive (> or = 20 pmol per well) as absorbance measurements with dual-wavelength photometers. Since up to 96 reactions can be initiated, monitored, and evaluated simultaneously, this method might be suitable for high-throughput screening programs on metabolite profiles. However, in contrast to absorbance measurements, fluorescence detection of NAD(P)H yields relative data, which can be impaired by the quench characteristics and the basic fluorescence of the extracts. Hence, extensive calibration is required to gain reproducible results. Calibration of the assay system was performed using leaf or root material (equivalent to 2-35 mg of fresh weight per well) extracted with perchloric acid, chloroform/water/methanol, or hot ethanol. Extraction with perchloric acid was found to be superior for metabolite quantification. Examples of the kinetics of individual metabolite determinations are presented and the contents of 3-phosphoglycerate, hexose phosphates, triose phosphates, pyruvate, and phosphoenolpyruvate in illuminated and darkened spinach leaves as well as leaf rosettes of Arabidopsis thaliana and leaf segments of the inducible crassulacean acid metabolism plant Mesembryanthemum crystallinum were measured via NAD(P)H fluorescence and, where possible, compared to reported data determined with dual-wavelength photometers.


Assuntos
Arabidopsis/química , Magnoliopsida/química , Spinacia oleracea/química , Calibragem , Clorofórmio/química , Metanol/química , NADP/química , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Espectrometria de Fluorescência , Água/química
8.
Planta ; 210(3): 371-82, 2000 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10750894

RESUMO

The physiological properties of transgenic tobacco plants (Nicotiana tabacum L.) with decreased or increased transport capacities of the chloroplast triose phosphate/phosphate translocator (TPT) were compared in order to investigate the extent to which the TPT controls metabolic fluxes in wild-type tobacco. For this purpose, tobacco lines with an antisense repression of the endogenous TPT (alphaTPT) and tobacco lines overexpressing the TPT gene isolated from the C4 plant Flaveria trinervia (FtTPT) were used. The F. trinervia TPT expressed in yeast cells exhibited transport characteristics identical to the TPT from C3 plants. Neither antisense TPT plants nor FtTPT overexpressors showed a phenotype when grown in a greenhouse in air. Contents of starch and soluble sugars in upper source leaves were similar in TPT underexpressors and FtTPT overexpressors compared to the wild type at the end of the photoperiod. The FtTPT overexpressors incorporated more 14CO2 in sucrose than the wild type, indicating that the TPT limits sucrose biosynthesis in the wild type. There were only small effects on labelling of amino acids and organic acids. The mobilisation of starch was enhanced in alphaTPT lines but decreased in FtTPT overexpressors compared to the wild type. Enzymes involved in starch mobilisation or utilisation, such as alpha-amylase or hexokinase were increased in alphaTPT plants and, in the case of amylases, decreased in FtTPT overexpressors. Moreover, alpha-amylase activity exhibited a pronounced diurnal variation in alphaTPT lines with a maximum activity after 8 h in the light. These changes in starch hydrolytic activities were confirmed by activity staining of native gels. Activities of glucan phosphorylases were unaffected by either a decrease or an increase in TPT activity. There were also effects of TPT activities on steady-state levels of phosphorylated intermediates as well as total amino acids and malate. In air, there was no or little effect of altered TPT transport activity on either rates of photosynthetic electron transport and/or CO2 assimilation. However, in elevated CO2 (1500 microl x l(-1)) and low O2 (2%) the rate of CO2 assimilation was decreased in the alphaTPT lines and was slightly higher in FtTPT lines. This shows that the TPT limits maximum rates of photosynthesis in the wild type.


Assuntos
Cloroplastos/fisiologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Nicotiana/fisiologia , Fotossíntese , Proteínas de Plantas/metabolismo , Plantas Tóxicas , Dióxido de Carbono/metabolismo , Proteínas de Cloroplastos , DNA Antissenso/genética , Proteínas de Membrana/genética , Proteínas de Plantas/genética , Plantas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas Recombinantes/metabolismo
9.
Planta ; 210(3): 383-90, 2000 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10750895

RESUMO

Transgenic tobacco (Nicotiana tabacum L.) plants with decreased and increased transport capacities of the chloroplast triose phosphate/phosphate translocator (TPT) were used to study the control the TPT exerts on the flux of starch and sucrose biosynthesis, as well as CO2 assimilation, respiration and photosynthetic electron transport. For this purpose, tobacco lines with an antisense repression of the endogenous TPT (alphaTPT) and tobacco lines overexpressing a TPT gene from Flaveria trinervia (FtTPT) were used. In ambient CO2, there was no or little effect of altered TPT transport activities on either rates of photosynthetic electron transport and/or CO2 assimilation. However, in elevated CO2 (1500 microl x 1(-1)) and low O2 (2%) the TPT exerted strong control on the rate of CO2 assimilation (control coefficient for the wild type; C(J(A))(TPT) = 0.30) in saturating light. Similarly, the incorporation of 14C into starch in high CO2 was increased in tobacco plants with decreased TPT activity, but was reduced in plants overexpressing the TPT from F. trinervia. Thus, the TPT exerted negative control on the rate of starch biosynthesis with a C(J(Starch))(TPT) = -0.19 in the wild type estimated from a hyperbolic curve fitted to the data points. This was less than the positive control strength on the rate of sucrose biosynthesis (C(J(Suc))(TPT) = 0.35 in the wild type). Theoretically, the positive control exerted on sucrose biosynthesis should be numerically identical to the negative control on starch biosynthesis unless additional metabolic pathways are affected. The rate of dark respiration showed some correlation with the TPT activity in that it increased in FtTPT overexpressors, but decreased in alphaTPT plants with an apparent control coefficient of C(J(Res))(TPT) = 0.24. If the control on sucrose biosynthesis is referred to as "gain of carbon" (positive control) and the control on starch biosynthesis as well as dark respiration as a "loss of carbon" (negative control) for sucrose biosynthesis and subsequent export, the sum of the control coefficients on dark respiration and starch biosynthesis would be numerically similar to the control coefficient on the rate of sucrose biosynthesis. There was also some control on the rate of photosynthetic electron transport, but only at high light and in elevated CO2 combined with low O2. The control coefficient for the rate of photosynthetic electron transport was C(J(ETR))(TPT) = 0.16 in the wild type. Control coefficients were also calculated for plants with elevated and lowered TPT activity. Furthermore, the extent to which starch degradation/glucose utilisation compensates for the lack of triose phosphate export was assessed. The TPT also exerted control on metabolite contents in air.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Fotossíntese , Proteínas de Plantas/metabolismo , Dióxido de Carbono/metabolismo , Proteínas de Cloroplastos , Proteínas de Membrana/genética , Proteínas de Plantas/genética , Plantas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Tóxicas , Proteínas Recombinantes/metabolismo , Amido/biossíntese , Nicotiana/fisiologia
10.
Plant Cell ; 11(9): 1609-22, 1999 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10488230

RESUMO

The Arabidopsis chlorophyll a/b binding protein (CAB) gene underexpressed 1 (cue1) mutant underexpresses light-regulated nuclear genes encoding chloroplast-localized proteins. cue1 also exhibits mesophyll-specific chloroplast and cellular defects, resulting in reticulate leaves. Both the gene underexpression and the leaf cell morphology phenotypes are dependent on light intensity. In this study, we determine that CUE1 encodes the plastid inner envelope phosphoenolpyruvate/phosphate translocator (PPT) and define amino acid residues that are critical for translocator function. The biosynthesis of aromatics is compromised in cue1, and the reticulate phenotype can be rescued by feeding aromatic amino acids. Determining that CUE1 encodes PPT indicates the in vivo role of the translocator in metabolic partitioning and reveals a mesophyll cell-specific requirement for the translocator in Arabidopsis leaves. The nuclear gene expression defects in cue1 suggest that a light intensity-dependent interorganellar signal is modulated through metabolites dependent on a plastid supply of phosphoenolpyruvate.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Fosfatos/metabolismo , Fosfoenolpiruvato/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/citologia , Sequência de Bases , Clorofila/biossíntese , Clorofila A , DNA de Plantas/genética , Expressão Gênica , Genes de Plantas , Luz , Dados de Sequência Molecular , Mutação , Fenóis/metabolismo , Fenótipo , Fotossíntese , Plastídeos/genética , Plastoquinona/metabolismo , Ácido Chiquímico/metabolismo
11.
Planta ; 204(3): 366-76, 1998 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-9530880

RESUMO

Tobacco (Nicotiana tabacum L.) plants were transformed with an antisense construct of the chloroplast triose phosphate/phosphate translocator (TPT). Three transformant lines of the T4 progeny, which showed a large decrease in the transcript level of the TPT were used for further biochemical and physiological characterisation. In all antisense lines tested, TPT transport activity was diminished by 50-70% compared with the wild type (WT). Despite this high reduction in the transport capacity, alpha TPT plants lacked any visible phenotype. Hexokinase and alpha-amylase activities were increased in alpha TPT plants compared with the WT, whereas activities of ribulose-1,5-bisphosphate carboxylase/oxygenase and ADP-glucose pyrophosphorylase (AGPase) were not affected. At the end of a 14-h light period, leaf starch contents in alpha TPT lines were similar to those of the WT and controls, indicating that a decrease in the TPT had no effect on starch accumulation. Sucrose contents were diminished by more than 50% in alpha TPT lines compared with control plants. The time course of starch accumulation revealed a transient increase in the starch content in a selected alpha TPT line after 6 h in the light, followed by a decrease towards the end of the light period. Labelling with 14C indicated that during the dark and light (late afternoon) periods starch is mobilised at higher rates in alpha TPT lines than in the controls. Glucose/fructose ratios at the end of the dark period were increased from 1.2 in control plants to 2 in alpha TPT lines indicating increased amylolytic starch degradation. Initial rates of [14C] glucose transport in isolated chloroplasts were increased by a factor of 2-3 in alpha TPT plants compared with the WT. Rates of CO2 assimilation were substantially diminished in the alpha TPT lines in high CO2 and low O2, but remained unaffected in ambient CO2. The rate of photosynthetic electron transport during the induction of photosynthesis in saturating CO2 exhibited pronounced oscillations only in WT and control plants. Oscillations were less pronounced in alpha TPT plants, indicating that phosphate limitation of photosynthesis is lowered in alpha TPT plants compared with the WT. It is proposed that photoassimilates are more readily directed into starch biosynthesis in alpha TPT plants. This is supported by determinations of 3-phosphoglycerate levels (an activator of AGPase) during the transition from dark to light in high CO2.


Assuntos
Glucose/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Plantas Tóxicas , Amido/metabolismo , Aminoácidos/metabolismo , Transporte Biológico , Radioisótopos de Carbono , Proteínas de Cloroplastos , Cloroplastos/metabolismo , Malatos/metabolismo , Fenótipo , Fotossíntese , Plantas Geneticamente Modificadas , Nicotiana/genética , Nicotiana/fisiologia
12.
Plant Physiol ; 114(4): 1307-1312, 1997 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12223772

RESUMO

Mutants of barley (Hordeum vulgare L. cv Maris Mink) with 47 or 66% of the glutamine synthetase (GS) activity of the wild type were used for studies of NH3 exchange with the atmosphere. Under normal light and temperature conditions, tissue NH4+ concentrations were higher in the two mutants compared with wild-type plants, and this was accompanied by higher NH3 emission from the leaves. The emission of NH3 increased with increasing leaf temperatures in both wild-type and mutant plants, but the increase was much more pronounced in the mutants. Similar results were found when the light intensity (photosynthetic photon flux density) was increased. Compensation points for NH3 were estimated by exposing intact shoots to 10 nmol NH3 mol-1 air under conditions with increasing temperatures until the plants started to emit NH3. Referenced to 25[deg]C, the compensation points were 5.0 nmol mol-1 for wild-type plants, 8.3 nmol mol-1 for 47% GS mutants, and 11.8 nmol mol-1 for 66% GS mutants. Compensation points for NH3 in single, nonsenescent leaves were estimated on the basis of apoplastic pH and NH4+ concentrations. These values were 0.75, 3.46, and 7.72 nmol mol-1 for wild type, 47% GS mutants, and 66% GS mutants, respectively. The 66% GS mutant always showed higher tissue NH4+ concentrations, NH3 emission rates, and NH3 compensation points compared with the 47% GS mutant, indicating that NH4+ release was curtailed by some kind of compensatory mechanism in plants with only 47% GS activity.

13.
Plant Cell ; 9(3): 453-62, 1997 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-9090886

RESUMO

We have purified a plastidic phosphate transport protein from maize endosperm membranes and cloned and sequenced the corresponding cDNAs from maize endosperm, maize roots, cauliflower buds, tobacco leaves, and Arabidopsis leaves. All of these cDNAs exhibit high homology to each other but only approximately 30% identity to the known chloroplast triose phosphate/phosphate translocators. The corresponding genes are expressed in both photosynthetically active tissues and in nongreen tissues, although transcripts were more abundant in nongreen tissues. Expression of the coding region in transformed yeast cells and subsequent transport measurements of the purified recombinant translocator showed that the protein mediates transport of inorganic phosphate in exchange with C3 compounds phosphorylated at C-atom 2, particularly phosphoenolpyruvate, which is required inside the plastids for the synthesis of, for example, aromatic amino acids. This plastidic phosphate transporter is thus different in structure and function from the known triose phosphate/phosphate translocator. We propose that plastids contain various phosphate translocators with overlapping substrate specificities to ensure an efficient supply of plastids with a single substrate, even in the presence of other phosphorylated metabolites.


Assuntos
Antiporters/metabolismo , Fosfatos/metabolismo , Plantas/metabolismo , Plastídeos/metabolismo , Sequência de Aminoácidos , Antiporters/química , Antiporters/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Brassica/genética , Brassica/metabolismo , Clonagem Molecular , DNA Complementar , Genes de Plantas , Dados de Sequência Molecular , Fosfoenolpiruvato/metabolismo , Fotossíntese , Folhas de Planta , Raízes de Plantas , Plantas/genética , Plantas Tóxicas , Sementes , Homologia de Sequência de Aminoácidos , Nicotiana/genética , Nicotiana/metabolismo , Zea mays/genética , Zea mays/metabolismo
14.
Plant Mol Biol ; 32(5): 831-48, 1996 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-8980535

RESUMO

Phosphoenolpyruvate carboxylase (PEPC) genes from Corynebacterium glutamicum (cppc), Escherichia coli (eppc) or Flaveria trinervia (fppc) were transferred to Solanum tuberosum. Plant regenerants producing foreign PEPC were identified by Western blot analysis. Maximum PEPC activities measured in eppc and fppc plants grown in the greenhouse were doubled compared to control plants. For cppc a transgenic plant line could be selected which exhibited a fourfold increase in PEPC activity. In the presence of acetyl-CoA, a known activator of the procaryotic PEPC, a sixfold higher activity level was observed. In cppc plants grown in axenic culture PEPC activities were even higher. There was a 6-fold or 12-fold increase in the PEPC activities compared to the controls measured in the absence or presence of acetyl-CoA, respectively. Comparable results were obtained by transient expression in Nicotiana tabacum protoplasts. PEPC of C. glutamicum (PEPC C.g.) in S. tuberosum leaf extracts displays its characteristic K(m) (PEP) value. Plant growth was examined with plants showing high expression of PEPC and, moreover, with a plant cell line expressing an antisense S. tuberosum (anti-sppc) gene. In axenic culture the growth rate of a cppc plant cell line was appreciably diminished, whereas growth rates of an anti-sppc line were similar or slightly higher than in controls. Malate levels were increased in cppc plants and decreased in antisense plants. There were no significant differences in photosynthetic electron transport or steady state CO2 assimilation between control plants and transformants overexpressing PEPC C.g. or anti-sppc plants. However, a prolonged dark treatment resulted in a delayed induction of photosynthetic electron transport in plants with less PEPC. Rates of CO2 release in the dark determined after a 45 min illumination period at a high proton flux density were considerably enhanced in cppc plants and slightly diminished in anti-sppc plants. When CO2 assimilation rates were corrected for estimated rates of mitochondrial respiration in the light, the electron requirement for CO2 assimilation determined in low CO2 was slightly lower in transformants with higher PEPC, whereas transformants with decreased PEPC exhibited an appreciably elevated electron requirement. The CO2 compensation point remained unchanged in plants (cppc) with high PEPC activity, but might be increased in an antisense plant cell line. Stomatal opening was delayed in antisense plants, but was accelerated in plants overexpressing PEPC C.g. compared to the controls.


Assuntos
Fosfoenolpiruvato Carboxilase/genética , Solanum tuberosum/genética , Aminoácidos/metabolismo , Dióxido de Carbono/metabolismo , Corynebacterium/enzimologia , DNA Antissenso/genética , Escuridão , Transporte de Elétrons , Escherichia coli/enzimologia , Vetores Genéticos , Malatos/metabolismo , Fosfoenolpiruvato Carboxilase/metabolismo , Fotossíntese , Folhas de Planta/metabolismo , Plantas/enzimologia , Plantas Geneticamente Modificadas , Plantas Tóxicas , Ácido Pirúvico/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Solanum tuberosum/crescimento & desenvolvimento , Nicotiana
16.
Plant Physiol ; 97(3): 1026-34, 1991 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16668486

RESUMO

Annual ryegrass (Lolium rigidum) biotype SLR 31 is resistant to the postemergent graminicide methyl-2-[4-(2,4-dichlorophenoxy)phenoxy]-propanoate (diclofop-methyl). Uptake of [(14)C](U-phenyl)diclofop-methyl and root/shoot distribution of radioactivity in susceptible and resistant plants were similar. In both biotypes, diclofop-methyl was rapidly demethylated to the biocidal metabolite diclofop acid which, in turn, was metabolized to ester and aryl-O-sugar conjugates. Susceptible plants accumulated 5 to 15% more radioactivity in dicloflop acid than did resistant plants. Resistant plants had a slightly greater capacity to form nonbiocidal sugar conjugates. Despite these differences, resistant plants retained 20% of (14)C in the biocidal metabolite diclofop acid 192 hours after treatment, whereas susceptible plants, which were close to death, retained 30% in diclofop acid. The small differences in the pool sizes of the active and inactive metabolites are by themselves unlikely to account for a 30-fold difference in sensitivity to the herbicide at the whole plant level. Similar high-pressure liquid chromatography elution patterns of conjugates from both susceptible and resistant biotypes indicated that the mechanisms and the products of catabolism in the biotypes are similar. It is suggested that metabolism of diclofop-methyl by the resistant biotype does not alone explain resistance observed at the whole-plant level. Diclofop acid reduced the electrochemical potential of membranes in etiolated coleoptiles of both biotypes; 50% depolarization required 1 to 4 mum diclofop acid. After removal of diclofop acid, membranes from the resistant biotype recovered polarity, whereas membranes from the susceptible biotype did not. Internal concentrations of diclofop acid 4 h after exposing plants to herbicide were estimated to be 36 to 39 micromolar in a membrane fraction and 16 to 17 micromolar in a soluble fraction. Such concentrations should be sufficient to fully depolarize membranes. It is postulated that differences in the ability of membranes to recover from depolarization are correlated with the resistance response of biotype SLR 31.

17.
Plant Physiol ; 97(3): 1035-43, 1991 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16668487

RESUMO

The herbicidally active aryloxyphenoxypropionates diclofop acid, haloxyfop acid, and fluazifop acid and the cyclohexanedione sethoxydim depolarized membranes in coleoptiles of eight biotypes of herbicide-susceptible and herbicide-resistant annual ryegrass (Lolium rigidum). Membrane polarity was reduced from -100 millivolts to -30 to -50 millivolts. Membranes repolarized after removal of the compounds only in biotypes with resistance to the compound added. Repolarization was not observed in herbicide-susceptible L. rigidum, nor was it observed in biotypes resistant to triazine, triazole, triazinone, phenylurea, or sulfonylurea herbicides but not resistant to aryloxyphenoxypropionates and cyclohexanediones. Chlorsulfuron, a sulfonylurea herbicide, at a saturating concentration of 1 micromolar, reduced membrane polarity in all biotypes studied by only 15 millivolts. The recovery of membrane potential following the removal of chlorsulfuron was restricted to chlorsulfuron-susceptible and -resistant biotypes that did not exhibit diclofop resistance. These differences in membrane responses are correlated with resistance to dicloflop rather than with resistance to chlorsulfuron. It is suggested that the differences may reflect altered membrane properties of diclofop-resistant biotypes. Further circumstantial evidence for dissimilarity of properties of membranes from diclofop-resistant and diclofop-susceptible ryegrass is provided by observations that K(+)/Na(+) ratios were significantly higher in coleoptiles from diclofop-resistant biotypes than in coleoptiles from susceptible plants. Intact and excised roots from susceptible biotypes were capable of acidifying the external medium, whereas roots from resistant biotypes were unable to do so. The ineluctable conclusion is that in L. rigidum the phenomena of membrane repolarization and resistance to aryloxyphenoxypropionate and cyclohexanedione herbicides are correlated.

18.
Plant Physiol ; 90(4): 1498-505, 1989 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16666957

RESUMO

Cytosolic ATP-dependent phosphofructokinase (PFK) from spinach leaves (Spinacia oleracea L.) was enriched 2600-fold by (NH(4))(2)SO(4) fractionation, DEAE anion exchange chromatography, Blue Sepharose CL-6B, and ATP agarose type 3-affinity chromatography. The final preparation had a specific activity of 417 nkat per milligram protein and exhibited four bands between 50 and 70 kilodaltons following denaturing electrophoresis. Only one band of ATP- and fructose 6-phosphate (F-6-P)-dependent, Pistimulated activity was detected following isoelectric focusing PAGE and nondenaturing discontinuous PAGE of the final preparation. Crude extracts contained, in addition to the band observed in the final preparation, a second band that was inhibited by Pi. The latter band is presumably chloroplastic PFK. PFK was stimulated by the anions Pi(2-), Cl(-), SO(4) (2-), NO(3) (-), HAsO(4) (2-), and HCO(3) (-) but was not affected by NH(4) (+). Pi and Mg(2+) changed the response of PFK toward pH and affected the saturation kinetics of F-6-P. In general, activity was highest when Pi was high and (or) Mg(2+) was low. Phosphoenolpyruvate (PEP), 2-PGA, and PPi, but not 3-PGA, inhibited PFK. Although the inhibition by PEP and 2-PGA was reduced or relieved by Pi, the inhibition by PPi was not affected by Pi. F-2, 6-P(2) had no effect upon the activity of PFK. It is proposed that, in the cytosol of spinach leaves, PFK is likely to be more active during the dark, when cytosolic Pi levels are high, than in the light.

19.
Plant Physiol ; 90(4): 1506-12, 1989 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16666958

RESUMO

Cytosolic ATP-phosphofructokinase (PFK) from spinach leaves (Spinacia oleracea L.) was inhibited by submillimolar concentrations of free Mg(2+). The free Mg(2+) concentration required for 50% inhibition of PFK activity was 0.22 millimolar. Inhibition by free Mg(2+) was independent of the MgATP(2-) concentration. Inorganic phosphate (Pi) reduces the inhibition of PFK activity by Mg(2+). Free ATP (ATP(4-)) also inhibits PFK activity. For free ATP the inhibition of PFK activity was dependent on the MgATP(2-) concentration. Fifty percent inhibition of PFK activity requires 1.2 and 3.7 millimolar free ATP at 0.1 and 0.5 millimolar MgATP(2-), respectively. It was proposed that free ATP competes for the MgATP(2-) binding site, whereas free Mg(2+) does not. Pi diminished the inhibitory effect of free ATP on PFK activity. Free ATP and Pi had substantial effects on the MgATP(2-) requirement of cytosolic PFK. For half-maximum saturation of PFK activity 3 and 76 micromolar MgATP(2-) was required at 0.007 and 0.8 millimolar free ATP in the absence of Pi. At 5 and 25 millimolar Pi, half-maximum saturation was achieved at 9 and 14 micromolar MgATP(2-). PFK activity was inhibited by Ca(2+). The inhibition by Ca(2+) depends upon the total Mg(2+) concentration. Fifty percent inhibition of PFK activity required 22 and 32 micromolar Ca(2+) at 0.1 and 0.2 millimolar Mg(2+), respectively. At physiological concentrations of about 0.5 millimolar free Mg(2+), Ca(2+) would have little effect on cytosolic PFK activity from spinach leaves. PFK is not absolutely specific for the nucleoside 5'-triphosphate substrate. Besides MgATP(2-), MgUTP(2-), MgCTP(2-), and MgGTP(2-) could be used as a substrate. All four free nucleotides inhibit PFK activity. The physiological consequences of the regulatory properties of cytosolic PFK from spinach leaves will be discussed. A model will be introduced, in an attempt to describe the complex interaction of PFK with substrates and the effectors Mg(2+) and Pi.

20.
Plant Physiol ; 84(2): 205-7, 1987 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16665416

RESUMO

ATP-dependent 6-phosphofructokinase (PFK) activity is present in both chloroplastic and in nonchloroplastic fractions isolated from spinach protoplasts. The activity in the extra-chloroplastic fraction was stimulated 2- to 3.5-fold by 25 mm inorganic phosphate (Pi), the chloroplast-associated activity was inhibited 2- to 5-fold. The Pi stimulated activity was ATP-dependent and was not an artifact due to the presence of fructose 6-P, Pi, pyrophosphatase, and pyrophosphate fructose 6-P 1-phosphotransferase (PFP). PFK activities, which expressed characteristics similar to those separated from protoplasts, could be separated following ammonium sulfate fractionation of crude extracts; the ammonium sulfate treatment also separated both PFK activities from PFP. It is concluded that spinach leaves contain a cytosolic PFK. This activity is relatively stable, is stimulated by Pi over a wide pH range, is not a result of the transformation of another enzyme activity, and has an activity that is similar to, or slightly less than, that of the cytosolic PFP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...