Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 123(19): 193605, 2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31765220

RESUMO

We implement a microscopic spin filter for cold fermionic atoms in a quantum point contact (QPC) and create fully spin-polarized currents while retaining conductance quantization. Key to our scheme is a near-resonant optical tweezer inducing a large effective Zeeman shift inside the QPC while its local character limits dissipation. We observe a renormalization of this shift due to interactions of only a few atoms in the QPC. Our work represents the analog of an actual spintronic device and paves the way to studying the interplay between spin splitting and interactions far from equilibrium.

2.
Proc Natl Acad Sci U S A ; 115(34): 8563-8568, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30093388

RESUMO

We report on coupled heat and particle transport measurements through a quantum point contact (QPC) connecting two reservoirs of resonantly interacting, finite temperature Fermi gases. After heating one of them, we observe a particle current flowing from cold to hot. We monitor the temperature evolution of the reservoirs and find that the system evolves after an initial response into a nonequilibrium steady state with finite temperature and chemical potential differences across the QPC. In this state any relaxation in the form of heat and particle currents vanishes. From our measurements we extract the transport coefficients of the QPC and deduce a Lorenz number violating the Wiedemann-Franz law by one order of magnitude, a characteristic persisting even for a wide contact. In contrast, the Seebeck coefficient takes a value close to that expected for a noninteracting Fermi gas and shows a smooth decrease as the atom density close to the QPC is increased beyond the superfluid transition. Our work represents a fermionic analog of the fountain effect observed with superfluid helium and poses challenges for microscopic modeling of the finite temperature dynamics of the unitary Fermi gas.

3.
Phys Rev Lett ; 119(3): 030403, 2017 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-28777599

RESUMO

We present a scanning probe microscopy technique for spatially resolving transport in cold atomic gases, in close analogy with scanning gate microscopy in semiconductor physics. The conductance of a quantum point contact connected to two atomic reservoirs is measured in the presence of a tightly focused laser beam acting as a local perturbation that can be precisely positioned in space. By scanning its position and recording the subsequent variations of conductance, we retrieve a high-resolution map of transport through a quantum point contact. We demonstrate a spatial resolution comparable to the extent of the transverse wave function of the atoms inside the channel and a position sensitivity below 10 nm. Our measurements agree well with an analytical model and ab initio numerical simulations, allowing us to identify a regime in transport where tunneling dominates over thermal effects. Our technique opens new perspectives for the high-resolution observation and manipulation of cold atomic gases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...