Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 752
Filtrar
1.
medRxiv ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38946956

RESUMO

Atopic dermatitis (AD) is a highly heritable and common inflammatory skin condition affecting children and adults worldwide. Multi-ancestry approaches to AD genetic association studies are poised to boost power to detect genetic signal and identify ancestry-specific loci contributing to AD risk. Here, we present a multi-ancestry GWAS meta-analysis of twelve AD cohorts from five ancestral populations totaling 56,146 cases and 602,280 controls. We report 101 genomic loci associated with AD, including 15 loci that have not been previously associated with AD or eczema. Fine-mapping, QTL colocalization, and cell-type enrichment analyses identified genes and cell types implicated in AD pathophysiology. Functional analyses in keratinocytes provide evidence for genes that could play a role in AD through epidermal barrier function. Our study provides new insights into the etiology of AD by harnessing multiple genetic and functional approaches to unveil the mechanisms by which AD-associated variants impact genes and cell types.

2.
medRxiv ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38853886

RESUMO

Background: The relationship between ambient air pollution (AAP) exposure and asthma exacerbations is well-established. However, mitigation efforts have yielded mixed results, potentially due to genetic variability in the response to AAP. We hypothesize that common single nucleotide polymorphisms (SNPs) are linked to AAP sensitivity and test this through a Genome Wide Association Study (GWAS). Methods: We selected a cohort of pediatric asthma patients frequently exposed to AAP. Patients experiencing exacerbations immediately following AAP spikes were deemed sensitive. A GWAS compared sensitive versus non-sensitive patients. Findings were validated using data from the All of Us program. Results: Our study included 6,023 pediatric asthma patients. Due to the association between AAP exposure and race, GWAS analysis was feasible only in the African ancestry cohort. Seven risk loci reached genome-wide significance, including four non-intergenic variants. Two variants were validated: rs111970601 associated with sensitivity to CO (odds ratio [OR], 6.58; PL=L1.63L×L10-8; 95% CI, 3.42-12.66) and rs9836522 to PM2.5 sensitivity (OR 0.75; PL=L3,87 ×L10-9; 95% CI, 0.62-0.91). Interpretation: While genetic variants have been previously linked to asthma incidence and AAP exposure, this study is the first to link specific SNPs with AAP-related asthma exacerbations. The identified variants implicate genes with a known role in asthma and established links to AAP. Future research should explore how clinical interventions interact with genetic risk to mitigate the effects of AAP, particularly to enhance health equity for vulnerable populations. What is already known on this topic: The relationship between ambient air pollution (AAP) exposure and asthma exacerbations is well-established. However, efforts to mitigate the impact of AAP on children with asthma have yielded mixed results, potentially due to genetic variability in response to AAP. What this study adds: Using publicly available AAP data, we identify which children with asthma experience exacerbations immediately following spikes in AAP. We then conduct a Genome Wide Association Study (GWAS) comparing these patients with those who have no temporal association between AAP spikes and asthma exacerbations, identifying several Single Nucleotide Polymorphisms (SNPs) significantly associated with AAP sensitivity. How this study might affect research practice or policy: While genetic variants have previously been linked to asthma incidence and AAP exposure, this study is the first to link specific SNPs with AAP-related asthma exacerbations. This creates a framework for identifying children especially at risk when exposed to AAP. These children should be targeted with policy interventions to reduce exposure and may require specific treatments to mitigate the effects of ongoing AAP exposure in the interim.

3.
bioRxiv ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38746128

RESUMO

The advent of long-read single-cell transcriptome sequencing (lr-scRNA-Seq) represents a significant leap forward in single-cell genomics. With the recent introduction of R10 flowcells by Oxford Nanopore, we propose that previous computational methods designed to handle high sequencing error rates are no longer relevant, and that the prevailing approach using short reads to compile "barcode space" (candidate barcode list) to de-multiplex long reads are no longer necessary. Instead, computational methods should now shift focus on harnessing the unique benefits of long reads to analyze transcriptome complexity. In this context, we introduce a comprehensive suite of computational methods named Single-Cell Omics for Transcriptome CHaracterization (SCOTCH). Our method is compatible with the single-cell library preparation platform from both 10X Genomics and Parse Biosciences, facilitating the analysis of special cell populations, such as neurons, hepatocytes and developing cardiomyocytes. We specifically re-formulated the transcript mapping problem with a compatibility matrix and addressed the multiple-mapping issue using probabilistic inference, which allows the discovery of novel isoforms as well as the detection of differential isoform usage between cell populations. We evaluated SCOTCH through analysis of real data across different combinations of single-cell libraries and sequencing technologies (10X + Illumina, Parse + Illumina, 10X + Nanopore_R9, 10X + Nanopore_R10, Parse + Nanopore_R10), and showed its ability to infer novel biological insights on cell type-specific isoform expression. These datasets enhance the availability of publicly available data for continued development of computational approaches. In summary, SCOTCH allows extraction of more biological insights from the new advancements in single-cell library construction and sequencing technologies, facilitating the examination of transcriptome complexity at the single-cell level.

4.
Arch Dermatol Res ; 316(6): 303, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819581

RESUMO

Voriconazole exposure is associated with skin cancer, but it is unknown how the full spectrum of its metabolizer phenotypes impacts this association. We conducted a retrospective cohort study to determine how variation in metabolism of voriconazole as measured by metabolizer status of CYP2C19 is associated with the total number of skin cancers a patient develops and the rate of development of the first skin cancer after treatment. There were 1,739 organ transplant recipients with data on CYP2C19 phenotype. Of these, 134 were exposed to voriconazole. There was a significant difference in the number of skin cancers after transplant based on exposure to voriconazole, metabolizer phenotype, and the interaction of these two (p < 0.01 for all three). This increase was driven primarily by number of squamous cell carcinomas among rapid metabolizes with voriconazole exposure (p < 0.01 for both). Patients exposed to voriconazole developed skin cancers more rapidly than those without exposure (Fine-Grey hazard ratio 1.78, 95% confidence interval 1.19-2.66). This association was similarly driven by development of SCC (Fine-Grey hazard ratio 1.83, 95% confidence interval 1.14-2.94). Differences in voriconazoles metabolism are associated with an increase in the number of skin cancers developed after transplant, particularly SCC.


Assuntos
Antifúngicos , Carcinoma de Células Escamosas , Citocromo P-450 CYP2C19 , Neoplasias Cutâneas , Voriconazol , Humanos , Voriconazol/efeitos adversos , Neoplasias Cutâneas/epidemiologia , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/metabolismo , Estudos Retrospectivos , Masculino , Feminino , Pessoa de Meia-Idade , Antifúngicos/efeitos adversos , Carcinoma de Células Escamosas/epidemiologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/etiologia , Citocromo P-450 CYP2C19/metabolismo , Citocromo P-450 CYP2C19/genética , Idoso , Transplante de Órgãos/efeitos adversos , Adulto
5.
Sci Immunol ; 9(95): eadk0865, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701189

RESUMO

Dysregulated B cell cytokine production contributes to pathogenesis of immune-mediated diseases including multiple sclerosis (MS); however, the underlying mechanisms are poorly understood. In this study we investigated how cytokine secretion by pro-inflammatory (GM-CSF-expressing) and anti-inflammatory (IL-10-expressing) B cells is regulated. Pro-inflammatory human B cells required increased oxidative phosphorylation (OXPHOS) compared with anti-inflammatory B cells. OXPHOS reciprocally modulated pro- and anti-inflammatory B cell cytokines through regulation of adenosine triphosphate (ATP) signaling. Partial inhibition of OXPHOS or ATP-signaling including with BTK inhibition resulted in an anti-inflammatory B cell cytokine shift, reversed the B cell cytokine imbalance in patients with MS, and ameliorated neuroinflammation in a myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalitis mouse model. Our study identifies how pro- and anti-inflammatory cytokines are metabolically regulated in B cells and identifies ATP and its metabolites as a "fourth signal" that shapes B cell responses and is a potential target for restoring the B cell cytokine balance in autoimmune diseases.


Assuntos
Linfócitos B , Citocinas , Encefalomielite Autoimune Experimental , Inflamação , Esclerose Múltipla , Fosforilação Oxidativa , Animais , Esclerose Múltipla/imunologia , Humanos , Citocinas/imunologia , Citocinas/metabolismo , Camundongos , Linfócitos B/imunologia , Encefalomielite Autoimune Experimental/imunologia , Inflamação/imunologia , Feminino , Masculino , Camundongos Endogâmicos C57BL , Adulto , Trifosfato de Adenosina/metabolismo , Pessoa de Meia-Idade
6.
Nat Methods ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783067

RESUMO

Spatially resolved transcriptomics (SRT) technologies have significantly advanced biomedical research, but their data analysis remains challenging due to the discrete nature of the data and the high levels of noise, compounded by complex spatial dependencies. Here, we propose spaVAE, a dependency-aware, deep generative spatial variational autoencoder model that probabilistically characterizes count data while capturing spatial correlations. spaVAE introduces a hybrid embedding combining a Gaussian process prior with a Gaussian prior to explicitly capture spatial correlations among spots. It then optimizes the parameters of deep neural networks to approximate the distributions underlying the SRT data. With the approximated distributions, spaVAE can contribute to several analytical tasks that are essential for SRT data analysis, including dimensionality reduction, visualization, clustering, batch integration, denoising, differential expression, spatial interpolation, resolution enhancement and identification of spatially variable genes. Moreover, we have extended spaVAE to spaPeakVAE and spaMultiVAE to characterize spatial ATAC-seq (assay for transposase-accessible chromatin using sequencing) data and spatial multi-omics data, respectively.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38692308

RESUMO

BACKGROUND: Autoimmune cytopenias (AICs) regularly occur in profoundly IgG-deficient patients with common variable immunodeficiency (CVID). The isotypes, antigenic targets, and origin(s) of their disease-causing autoantibodies are unclear. OBJECTIVE: We sought to determine reactivity, clonality, and provenance of AIC-associated IgM autoantibodies in patients with CVID. METHODS: We used glycan arrays, patient erythrocytes, and platelets to determine targets of CVID IgM autoantibodies. Glycan-binding profiles were used to identify autoreactive clones across B-cell subsets, specifically circulating marginal zone (MZ) B cells, for sorting and IGH sequencing. The locations, transcriptomes, and responses of tonsillar MZ B cells to different TH- cell subsets were determined by confocal microscopy, RNA-sequencing, and cocultures, respectively. RESULTS: Autoreactive IgM coated erythrocytes and platelets from many CVID patients with AICs (CVID+AIC). On glycan arrays, CVID+AIC plasma IgM narrowly recognized erythrocytic i antigens and platelet i-related antigens and failed to bind hundreds of pathogen- and tumor-associated carbohydrates. Polyclonal i antigen-recognizing B-cell receptors were highly enriched among CVID+AIC circulating MZ B cells. Within tonsillar tissues, MZ B cells secreted copious IgM when activated by the combination of IL-10 and IL-21 or when cultured with IL-10/IL-21-secreting FOXP3-CD25hi T follicular helper (Tfh) cells. In lymph nodes from immunocompetent controls, MZ B cells, plentiful FOXP3+ regulatory T cells, and rare FOXP3-CD25+ cells that represented likely CD25hi Tfh cells all localized outside of germinal centers. In CVID+AIC lymph nodes, cellular positions were similar but CD25hi Tfh cells greatly outnumbered regulatory cells. CONCLUSIONS: Our findings indicate that glycan-reactive IgM autoantibodies produced outside of germinal centers may contribute to the autoimmune pathogenesis of CVID.

8.
Res Sq ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38699337

RESUMO

Voriconazole exposure is associated with skin cancer, but it is unknown how the full spectrum of its metabolizer phenotypes impacts this association. We conducted a retrospective cohort study to determine how variation in metabolism of voriconazole as measured by metabolizer status of CYP2C19 is associated with the total number of skin cancers a patient develops and the rate of development of the first skin cancer after treatment. There were 1,739 organ transplant recipients with data on CYP2C19 phenotype. Of these, 134 were exposed to voriconazole. There was a significant difference in the number of skin cancers after transplant based on exposure to voriconazole, metabolizer phenotype, and the interaction of these two (p < 0.01 for all three). This increase was driven primarily by number of squamous cell carcinomas among rapid metabolizes with voriconazole exposure (p < 0.01 for both). Patients exposed to voriconazole developed skin cancers more rapidly than those without exposure (Fine-Grey hazard ratio 1.78, 95% confidence interval 1.19-2.66). This association was similarly driven by development of SCC (Fine-Grey hazard ratio 1.83, 95% confidence interval 1.14-2.94). Differences in voriconazoles metabolism are associated with an increase in the number of skin cancers developed after transplant, particularly SCC.

9.
Neurol Clin Pract ; 14(3): e200228, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38690148

RESUMO

Objectives: Heterozygous missense variants in MYBPC1 have been recently identified in 13 patients from 6 families with congenital myopathy with tremor. All the patients had mild skeletal myopathy invariably associated with a distinctive myogenic tremor and hypotonia with gradual clinical improvement. However, no phenotypic description has been reported for the neonatal respiratory impairment that patients may suffer. Methods: We report 3 new patients from 2 independent families with congenital myopathy with tremor. Results: Tremors and respiratory distress associated with stridor should raise the diagnosis of congenital myopathy with tremors linked to MYBPC1-dominant variants in children with neonatal hypotonia. Discussion: Neonatal severe respiratory impairment requiring intensive noninvasive ventilation because of stridor is described in 2 patients. Stridor was previously reported in one other case and is part of the clinical features.

10.
Brain Behav Immun ; 119: 767-780, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38677625

RESUMO

The co-occurrence and familial clustering of neurodevelopmental disorders and immune disorders suggest shared genetic risk factors. Based on genome-wide association summary statistics from five neurodevelopmental disorders and four immune disorders, we conducted genome-wide, local genetic correlation and polygenic overlap analysis. We further performed a cross-trait GWAS meta-analysis. Pleotropic loci shared between the two categories of diseases were mapped to candidate genes using multiple algorithms and approaches. Significant genetic correlations were observed between neurodevelopmental disorders and immune disorders, including both positive and negative correlations. Neurodevelopmental disorders exhibited higher polygenicity compared to immune disorders. Around 50%-90% of genetic variants of the immune disorders were shared with neurodevelopmental disorders. The cross-trait meta-analysis revealed 154 genome-wide significant loci, including 8 novel pleiotropic loci. Significant associations were observed for 30 loci with both types of diseases. Pathway analysis on the candidate genes at these loci revealed common pathways shared by the two types of diseases, including neural signaling, inflammatory response, and PI3K-Akt signaling pathway. In addition, 26 of the 30 lead SNPs were associated with blood cell traits. Neurodevelopmental disorders exhibit complex polygenic architecture, with a subset of individuals being at a heightened genetic risk for both neurodevelopmental and immune disorders. The identification of pleiotropic loci has important implications for exploring opportunities for drug repurposing, enabling more accurate patient stratification, and advancing genomics-informed precision in the medical field of neurodevelopmental disorders.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Doenças do Sistema Imunitário , Herança Multifatorial , Transtornos do Neurodesenvolvimento , Polimorfismo de Nucleotídeo Único , Humanos , Transtornos do Neurodesenvolvimento/genética , Doenças do Sistema Imunitário/genética , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único/genética , Herança Multifatorial/genética
11.
Nat Commun ; 15(1): 3384, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649760

RESUMO

Polygenic variation unrelated to disease contributes to interindividual variation in baseline white blood cell (WBC) counts, but its clinical significance is uncharacterized. We investigated the clinical consequences of a genetic predisposition toward lower WBC counts among 89,559 biobank participants from tertiary care centers using a polygenic score for WBC count (PGSWBC) comprising single nucleotide polymorphisms not associated with disease. A predisposition to lower WBC counts was associated with a decreased risk of identifying pathology on a bone marrow biopsy performed for a low WBC count (odds-ratio = 0.55 per standard deviation increase in PGSWBC [95%CI, 0.30-0.94], p = 0.04), an increased risk of leukopenia (a low WBC count) when treated with a chemotherapeutic (n = 1724, hazard ratio [HR] = 0.78 [0.69-0.88], p = 4.0 × 10-5) or immunosuppressant (n = 354, HR = 0.61 [0.38-0.99], p = 0.04). A predisposition to benign lower WBC counts was associated with an increased risk of discontinuing azathioprine treatment (n = 1,466, HR = 0.62 [0.44-0.87], p = 0.006). Collectively, these findings suggest that there are genetically predisposed individuals who are susceptible to escalations or alterations in clinical care that may be harmful or of little benefit.


Assuntos
Predisposição Genética para Doença , Leucopenia , Herança Multifatorial , Polimorfismo de Nucleotídeo Único , Humanos , Contagem de Leucócitos , Masculino , Feminino , Leucopenia/genética , Leucopenia/sangue , Pessoa de Meia-Idade , Idoso , Adulto , Imunossupressores/uso terapêutico
12.
J Clin Invest ; 134(11)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652549

RESUMO

CD8+ T cell dysfunction impedes antitumor immunity in solid cancers, but the underlying mechanisms are diverse and poorly understood. Extracellular matrix (ECM) composition has been linked to impaired T cell migration and enhanced tumor progression; however, impacts of individual ECM molecules on T cell function in the tumor microenvironment (TME) are only beginning to be elucidated. Upstream regulators of aberrant ECM deposition and organization in solid tumors are equally ill-defined. Therefore, we investigated how ECM composition modulates CD8+ T cell function in undifferentiated pleomorphic sarcoma (UPS), an immunologically active desmoplastic tumor. Using an autochthonous murine model of UPS and data from multiple human patient cohorts, we discovered a multifaceted mechanism wherein the transcriptional coactivator YAP1 promotes collagen VI (COLVI) deposition in the UPS TME. In turn, COLVI induces CD8+ T cell dysfunction and immune evasion by remodeling fibrillar collagen and inhibiting T cell autophagic flux. Unexpectedly, collagen I (COLI) opposed COLVI in this setting, promoting CD8+ T cell function and acting as a tumor suppressor. Thus, CD8+ T cell responses in sarcoma depend on oncogene-mediated ECM composition and remodeling.


Assuntos
Linfócitos T CD8-Positivos , Matriz Extracelular , Sarcoma , Microambiente Tumoral , Proteínas de Sinalização YAP , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Animais , Microambiente Tumoral/imunologia , Camundongos , Proteínas de Sinalização YAP/imunologia , Proteínas de Sinalização YAP/genética , Humanos , Matriz Extracelular/imunologia , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Sarcoma/imunologia , Sarcoma/patologia , Sarcoma/genética , Sarcoma/metabolismo , Colágeno Tipo VI/genética , Colágeno Tipo VI/imunologia , Colágeno Tipo VI/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/imunologia , Oncogenes , Proteínas de Neoplasias/imunologia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/imunologia
13.
Am J Hum Genet ; 111(6): 999-1005, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38688278

RESUMO

The differential performance of polygenic risk scores (PRSs) by group is one of the major ethical barriers to their clinical use. It is also one of the main practical challenges for any implementation effort. The social repercussions of how people are grouped in PRS research must be considered in communications with research participants, including return of results. Here, we outline the decisions faced and choices made by a large multi-site clinical implementation study returning PRSs to diverse participants in handling this issue of differential performance. Our approach to managing the complexities associated with the differential performance of PRSs serves as a case study that can help future implementers of PRSs to plot an anticipatory course in response to this issue.


Assuntos
Predisposição Genética para Doença , Herança Multifatorial , Humanos , Herança Multifatorial/genética , Fatores de Risco , Estudo de Associação Genômica Ampla , Medição de Risco , Testes Genéticos/métodos , Estratificação de Risco Genético
14.
medRxiv ; 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38559031

RESUMO

Genetic effects on changes in human traits over time are understudied and may have important pathophysiological impact. We propose a framework that enables data quality control, implements mixed models to evaluate trajectories of change in traits, and estimates phenotypes to identify age-varying genetic effects in genome-wide association studies (GWASs). Using childhood body mass index (BMI) as an example, we included 71,336 participants from six cohorts and estimated the slope and area under the BMI curve within four time periods (infancy, early childhood, late childhood and adolescence) for each participant, in addition to the age and BMI at the adiposity peak and the adiposity rebound. GWAS on each of the estimated phenotypes identified 28 genome-wide significant variants at 13 loci across the 12 estimated phenotypes, one of which was novel (in DAOA) and had not been previously associated with childhood or adult BMI. Genetic studies of changes in human traits over time could uncover novel biological mechanisms influencing quantitative traits.

15.
J Med Genet ; 61(7): 677-688, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38443156

RESUMO

BACKGROUND: Epigenetics makes substantial contribution to the aetiology of autism spectrum disorder (ASD) and may harbour a unique opportunity to prevent the development of ASD. We aimed to identify novel epigenetic genes involved in ASD aetiology. METHODS: Trio-based whole exome sequencing was conducted on ASD families. Genome editing technique was used to knock out the candidate causal gene in a relevant cell line. ATAC-seq, ChIP-seq and RNA-seq were performed to investigate the functional impact of knockout (KO) or mutation in the candidate gene. RESULTS: We identified a novel candidate gene NASP (nuclear autoantigenic sperm protein) for epigenetic dysregulation in ASD in a Chinese nuclear family including one proband with autism and comorbid atopic disease. The de novo likely gene disruptive variant tNASP(Q289X) subjects the expression of tNASP to nonsense-mediated decay. tNASP KO increases chromatin accessibility, promotes the active promoter state of genes enriched in synaptic signalling and leads to upregulated expression of genes in the neural signalling and immune signalling pathways. Compared with wild-type tNASP, tNASP(Q289X) enhances chromatin accessibility of the genes with enriched expression in the brain. RNA-seq revealed that genes involved in neural and immune signalling are affected by the tNASP mutation, consistent with the phenotypic impact and molecular effects of nasp-1 mutations in Caenorhabditis elegans. Two additional patients with ASD were found carrying deletion or deleterious mutation in the NASP gene. CONCLUSION: We identified novel epigenetic mechanisms mediated by tNASP which may contribute to the pathogenesis of ASD and its immune comorbidity.


Assuntos
Transtorno do Espectro Autista , Autoantígenos , Epigênese Genética , Proteínas Nucleares , Feminino , Humanos , Masculino , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/imunologia , Transtorno Autístico/genética , Transtorno Autístico/patologia , Sequenciamento do Exoma , Predisposição Genética para Doença , Mutação , Linhagem , Transdução de Sinais/genética , Autoantígenos/genética , Proteínas Nucleares/genética
16.
Cancer Lett ; 588: 216776, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38432581

RESUMO

Due to the limited effectiveness of current treatments, the survival rate of patients with metastatic castration-resistant prostate cancer (mCRPC) is significantly reduced. Consequently, it is imperative to identify novel therapeutic targets for managing these patients. Since the invasive ability of cells is crucial for establishing and maintaining metastasis, the aim of this study was to identify the essential regulators of invasive abilities of mCRPC cells by conducting two independent high-throughput CRISPR/Cas9 screenings. Furthermore, some of the top hits were validated using siRNA technology, with protein arginine methyltransferase 7 (PRMT7) emerging as the most promising candidate. We demonstrated that its inhibition or depletion via genetic or pharmacological approaches significantly reduces invasive, migratory and proliferative abilities of mCRPC cells in vitro. Moreover, we confirmed that PRMT7 ablation reduces cell dissemination in chicken chorioallantoic membrane and mouse xenograft assays. Molecularly, PRMT7 reprograms the expression of several adhesion molecules by methylating various transcription factors, such as FoxK1, resulting in the loss of adhesion from the primary tumor and increased motility of mCRPC cells. Furthermore, PRMT7 higher expression correlates with tumor aggressivity and poor overall survival in prostate cancer patients. Thus, this study demonstrates that PRMT7 is a potential therapeutic target and potential biomarker for mPCa.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Proteína-Arginina N-Metiltransferases , Masculino , Animais , Camundongos , Humanos , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Sistemas CRISPR-Cas , Genes Essenciais , Detecção Precoce de Câncer
17.
Nutr Metab Cardiovasc Dis ; 34(5): 1305-1313, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38508993

RESUMO

BACKGROUND AND AIMS: The putative association between serum 25-hydroxyvitamin D concentration [25(OH)D] and the risk of cardioembolic stroke (CES) has been examined in observational studies, which indicate controversial findings. We performed Mendelian randomization (MR) analysis to determine the causal relationship of serum 25(OH)D with the risk of CES. METHODS AND RESULTS: The summary statistics dataset on the genetic variants related to 25(OH)D was used from the published GWAS of European descent participants in the UK Biobank, including 417,580 subjects, yielding 143 independent loci in 112 1-Mb regions. GWAS summary data of CES was obtained from GIGASTROKE Consortium, which included European individuals (10,804 cases, 1,234,808 controls). Our results unveiled a causal relationship between 25(OH)D and CES using IVW [OR = 0.82, 95% CI: 0.67-0.98, p = 0.037]. Horizontal pleiotropy was not seen [MR-Egger intercept = 0.001; p = 0.792], suggesting an absence of horizontal pleiotropy. Cochrane's Q [Q = 78.71, p-value = 0.924], Rucker's Q [Q = 78.64, p-value = 0.913], and I2 = 0.0% (95% CI: 0.0%, 24.6%) statistic suggested no heterogeneity. This result remained consistent using different MR methods and sensitivity analyses, including Maximum likelihood [OR = 0.82, 95%CI: 0.67-0.98, p-value = 0.036], Constrained maximum likelihood [OR = 0.76, 95%CI: 0.64-0.90, p-value = 0.002], Debiased inverse-variance weighted [OR = 0.82, 95%CI: 0.68-0.99, p-value = 0.002], MR-PRESSO [OR = 0.82, 95%CI 0.77-0.87, p-value = 0.022], RAPS [OR = 0.82, 95%CI 0.67-0.98, p-value = 0.038], MR-Lasso [OR = 0.82, 95%CI 0.68-0.99, p-value = 0.037]. CONCLUSION: Our MR analysis provides suggestive evidence that increased 25(OH)D levels may play a protective role in the development of cardioembolic stroke. Determining the role of 25(OH)D in stroke subtypes has important clinical and public health implications.


Assuntos
AVC Embólico , Compostos Heterocíclicos , Compostos Organometálicos , Acidente Vascular Cerebral , Vitamina D/análogos & derivados , Humanos , Análise da Randomização Mendeliana , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/genética , Estudo de Associação Genômica Ampla
18.
Artigo em Inglês | MEDLINE | ID: mdl-38317060

RESUMO

BACKGROUND: The genetic architecture of juvenile idiopathic arthritis (JIA) remains only partially comprehended. There is a clear imperative for continued endeavors to uncover insights into the underlying causes of JIA. METHODS: This study encompassed a comprehensive spectrum of endeavors, including conducting a JIA GWAS meta-analysis that incorporated data from 4,550 JIA cases and 18 446 controls. We employed in silico and genome-editing approaches to prioritize target genes. To investigate pleiotropic effects, we conducted phenome-wide association studies. Cell-type enrichment analyses were performed by integrating bulk and single-cell sequencing data. Finally, we delved into potential druggable targets for JIA. RESULTS: Fourteen genome-wide significant non-HLA loci were identified including four novel loci, each exhibiting pleiotropic associations with other autoimmune diseases or musculoskeletal traits. We uncovered strong genetic correlation between JIA and bone mineral density (BMD) traits at 52 genomic regions, including three GWAS loci for JIA. Candidate genes with immune functions were captured by in silico analyses at each novel locus, with additional findings identified through our experimental approach. Cell-type enrichment analysis revealed 21 specific immune cell types crucial for affected organs in JIA, indicating their potential contribution to the disease. Finally, 24 known or candidate druggable target genes were prioritized. CONCLUSIONS: Our identification of four novel JIA associated genes, CD247, RHOH, COLEC10 and IRF8, broadens novel potential drug repositioning opportunities. We established a new genetic link between COLEC10, TNFRSF11B and JIA/BMD. Additionally, the identification of RHOH underscores its role in positive thymocyte selection, thereby illuminating a critical facet of JIA's underlying biological mechanisms.

19.
Sci Rep ; 14(1): 4739, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413617

RESUMO

Dyslipidemia, as a metabolic risk factor, with the strongest and most heritable independent cause of cardiovascular diseases worldwide. We investigated the familial transmission patterns of dyslipidemia through a longitudinal family-based cohort, the Tehran Cardiometabolic Genetic Study (TCGS) in Iran. We enrolled 18,729 individuals (45% were males) aged > 18 years (mean: 38.15 (15.82)) and observed them over five 3-year follow-up periods. We evaluated the serum concentrations of total cholesterol, triglyceride, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol with the first measurement among longitudinal measures and the average measurements (AM) of the five periods. Heritability analysis was conducted using a mixed-effect framework with likelihood-based and Bayesian approaches. The periodic prevalence and heritability of dyslipidemia were estimated to be 65.7 and 42%, respectively. The likelihood of an individual having at least one dyslipidemic parent reveals an OR = 6.94 (CI 5.28-9.30) compared to those who do not have dyslipidemic parents. The most considerable intraclass correlation of family members was for the same-sex siblings, with ICC ~ 25.5%. For serum concentrations, heritability ranged from 33.64 to 60.95%. Taken together, these findings demonstrate that familial transmission of dyslipidemia in the Tehran population is strong, especially within the same-gender siblings. According to previous reports, the heritability of dyslipidemia in this population is considerably higher than the global average.


Assuntos
Doenças Cardiovasculares , Dislipidemias , Masculino , Humanos , Feminino , Estudos de Coortes , Teorema de Bayes , Funções Verossimilhança , Irã (Geográfico)/epidemiologia , Dislipidemias/epidemiologia , Dislipidemias/genética , Triglicerídeos , HDL-Colesterol , Fatores de Risco , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/genética
20.
Nat Med ; 30(2): 480-487, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38374346

RESUMO

Polygenic risk scores (PRSs) have improved in predictive performance, but several challenges remain to be addressed before PRSs can be implemented in the clinic, including reduced predictive performance of PRSs in diverse populations, and the interpretation and communication of genetic results to both providers and patients. To address these challenges, the National Human Genome Research Institute-funded Electronic Medical Records and Genomics (eMERGE) Network has developed a framework and pipeline for return of a PRS-based genome-informed risk assessment to 25,000 diverse adults and children as part of a clinical study. From an initial list of 23 conditions, ten were selected for implementation based on PRS performance, medical actionability and potential clinical utility, including cardiometabolic diseases and cancer. Standardized metrics were considered in the selection process, with additional consideration given to strength of evidence in African and Hispanic populations. We then developed a pipeline for clinical PRS implementation (score transfer to a clinical laboratory, validation and verification of score performance), and used genetic ancestry to calibrate PRS mean and variance, utilizing genetically diverse data from 13,475 participants of the All of Us Research Program cohort to train and test model parameters. Finally, we created a framework for regulatory compliance and developed a PRS clinical report for return to providers and for inclusion in an additional genome-informed risk assessment. The initial experience from eMERGE can inform the approach needed to implement PRS-based testing in diverse clinical settings.


Assuntos
Doença Crônica , Estratificação de Risco Genético , Saúde da População , Adulto , Criança , Humanos , Comunicação , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Fatores de Risco , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...