Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 33(6): e5001, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723111

RESUMO

De novo protein design expands the protein universe by creating new sequences to accomplish tailor-made enzymes in the future. A promising topology to implement diverse enzyme functions is the ubiquitous TIM-barrel fold. Since the initial de novo design of an idealized four-fold symmetric TIM barrel, the family of de novo TIM barrels is expanding rapidly. Despite this and in contrast to natural TIM barrels, these novel proteins lack cavities and structural elements essential for the incorporation of binding sites or enzymatic functions. In this work, we diversified a de novo TIM barrel by extending multiple ßα-loops using constrained hallucination. Experimentally tested designs were found to be soluble upon expression in Escherichia coli and well-behaved. Biochemical characterization and crystal structures revealed successful extensions with defined α-helical structures. These diversified de novo TIM barrels provide a framework to explore a broad spectrum of functions based on the potential of natural TIM barrels.


Assuntos
Modelos Moleculares , Escherichia coli/genética , Escherichia coli/metabolismo , Cristalografia por Raios X , Dobramento de Proteína , Engenharia de Proteínas/métodos , Proteínas/química , Proteínas/metabolismo
2.
FEBS Lett ; 598(11): 1375-1386, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38508768

RESUMO

Modular assembly is a compelling pathway to create new proteins, a concept supported by protein engineering and millennia of evolution. Natural evolution provided a repository of building blocks, known as domains, which trace back to even shorter segments that underwent numerous 'copy-paste' processes culminating in the scaffolds we see today. Utilizing the subdomain-database Fuzzle, we constructed a fold-chimera by integrating a flavodoxin-like fragment into a periplasmic binding protein. This chimera is well-folded and a crystal structure reveals stable interfaces between the fragments. These findings demonstrate the adaptability of α/ß-proteins and offer a stepping stone for optimization. By emphasizing the practicality of fragment databases, our work pioneers new pathways in protein engineering. Ultimately, the results substantiate the conjecture that periplasmic binding proteins originated from a flavodoxin-like ancestor.


Assuntos
Engenharia de Proteínas , Dobramento de Proteína , Engenharia de Proteínas/métodos , Modelos Moleculares , Flavodoxina/química , Flavodoxina/metabolismo , Flavodoxina/genética , Proteínas Periplásmicas de Ligação/metabolismo , Proteínas Periplásmicas de Ligação/química , Proteínas Periplásmicas de Ligação/genética , Cristalografia por Raios X , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/genética , Domínios Proteicos
3.
Protein Sci ; 33(3): e4926, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38380781

RESUMO

Over the past decades, the TIM-barrel fold has served as a model system for the exploration of how changes in protein sequences affect their structural, stability, and functional characteristics, and moreover, how this information can be leveraged to design proteins from the ground up. After numerous attempts to design de novo proteins with this specific fold, sTIM11 was the first validated de novo design of an idealized four-fold symmetric TIM barrel. Subsequent efforts to enhance the stability of this initial design resulted in the development of DeNovoTIMs, a family of de novo TIM barrels with various stabilizing mutations. In this study, we present an investigation into the biophysical and thermodynamic effects upon introducing a varying number of stabilizing mutations per quarter along the sequence of a four-fold symmetric TIM barrel. We compared the base design DeNovoTIM0 without any stabilizing mutations with variants containing mutations in one, two, three, and all four quarters-designated TIM1q, TIM2q, TIM3q, and DeNovoTIM6, respectively. This analysis revealed a stepwise and nonlinear change in the thermodynamic properties that correlated with the number of mutated quarters, suggesting positive nonadditive effects. To shed light on the significance of the location of stabilized quarters, we engineered two variants of TIM2q which contain the same number of mutations but positioned in different quarter locations. Characterization of these TIM2q variants revealed that the mutations exhibit varying effects on the overall protein stability, contingent upon the specific region in which they are introduced. These findings emphasize that the amount and location of stabilized interfaces among the four quarters play a crucial role in shaping the conformational stability of these four-fold symmetric TIM barrels. Analysis of de novo proteins, as described in this study, enhances our understanding of how sequence variations can finely modulate stability in both naturally occurring and computationally designed proteins.


Assuntos
Dobramento de Proteína , Proteínas , Proteínas/química , Sequência de Aminoácidos , Estabilidade Proteica , Termodinâmica , Mutação
4.
Protein Sci ; 32(11): e4793, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37788980

RESUMO

Investigating the evolution of structural features in modern multidomain proteins helps to understand their immense diversity and functional versatility. The class of periplasmic binding proteins (PBPs) offers an opportunity to interrogate one of the main processes driving diversification: the duplication and fusion of protein sequences to generate new architectures. The symmetry of their two-lobed topology, their mechanism of binding, and the organization of their operon structure led to the hypothesis that PBPs arose through a duplication and fusion event of a single common ancestor. To investigate this claim, we set out to reverse the evolutionary process and recreate the structural equivalent of a single-lobed progenitor using ribose-binding protein (RBP) as our model. We found that this modern PBP can be deconstructed into its lobes, producing two proteins that represent possible progenitor halves. The isolated halves of RBP are well folded and monomeric proteins, albeit with a lower thermostability, and do not retain the original binding function. However, the two entities readily form a heterodimer in vitro and in-cell. The x-ray structure of the heterodimer closely resembles the parental protein. Moreover, the binding function is fully regained upon formation of the heterodimer with a ligand affinity similar to that observed in the modern RBP. This highlights how a duplication event could have given rise to a stable and functional PBP-like fold and provides insights into how more complex functional structures can evolve from simpler molecular components.


Assuntos
Proteínas Periplásmicas de Ligação , Proteínas Periplásmicas de Ligação/química , Proteínas Periplásmicas de Ligação/metabolismo , Proteínas de Transporte/química , Sequência de Aminoácidos , Ligantes , Ligação Proteica , Evolução Molecular
5.
Biodes Res ; 5: 0011, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37849459

RESUMO

A key functionality of proteins is based on their ability to form interactions with other proteins or peptides. These interactions are neither easily described nor fully understood, which is why the design of specific protein-protein interaction interfaces remains a challenge for protein engineering. We recently developed the software ATLIGATOR to extract common interaction patterns between different types of amino acids and store them in a database. The tool enables the user to better understand frequent interaction patterns and find groups of interactions. Furthermore, frequent motifs can be directly transferred from the database to a user-defined scaffold as a starting point for the engineering of new binding capabilities. Since three-dimensional visualization is a crucial part of ATLIGATOR, we created ATLIGATOR web-a web server offering an intuitive graphical user interface (GUI) available at https://atligator.uni-bayreuth.de. This new interface empowers users to apply ATLIGATOR by providing easy access with having all parts directly connected. Moreover, we extended the web by a design functionality so that, overall, ATLIGATOR web facilitates the use of ATLIGATOR with a more intuitive UI and advanced design options.

6.
Protein Eng Des Sel ; 362023 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-37707513

RESUMO

Computational protein design promises the ability to build tailor-made proteins de novo. While a range of de novo proteins have been constructed so far, the majority of these designs have idealized topologies that lack larger cavities which are necessary for the incorporation of small molecule binding sites or enzymatic functions. One attractive target for enzyme design is the TIM-barrel fold, due to its ubiquity in nature and capability to host versatile functions. With the successful de novo design of a 4-fold symmetric TIM barrel, sTIM11, an idealized, minimalistic scaffold was created. In this work, we attempted to extend this de novo TIM barrel by incorporating a helix-loop-helix motif into its ßα-loops by applying a physics-based modular design approach using Rosetta. Further diversification was performed by exploiting the symmetry of the scaffold to integrate two helix-loop-helix motifs into the scaffold. Analysis with AlphaFold2 and biochemical characterization demonstrate the formation of additional α-helical secondary structure elements supporting the successful extension as intended.


Assuntos
Física , Proteínas , Modelos Moleculares , Proteínas/química , Sequências Hélice-Alça-Hélice , Dobramento de Proteína
8.
Acta Crystallogr D Struct Biol ; 79(Pt 1): 40-49, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36601806

RESUMO

Periplasmic binding proteins (PBPs) are a class of proteins that participate in the cellular transport of various ligands. They have been used as model systems to study mechanisms in protein evolution, such as duplication, recombination and domain swapping. It has been suggested that PBPs evolved from precursors half their size. Here, the crystal structures of two permuted halves of a modern ribose-binding protein (RBP) from Thermotoga maritima are reported. The overexpressed proteins are well folded and show a monomer-dimer equilibrium in solution. Their crystal structures show partially noncanonical PBP-like fold type I conformations with structural deviations from modern RBPs. One of the half variants forms a dimer via segment swapping, suggesting a high degree of malleability. The structural findings on these permuted halves support the evolutionary hypothesis that PBPs arose via a duplication event of a flavodoxin-like protein and further support a domain-swapping step that might have occurred during the evolution of the PBP-like fold, a process that is necessary to generate the characteristic motion of PBPs essential to perform their functions.


Assuntos
Proteínas de Transporte , Proteínas Periplásmicas de Ligação , Proteínas de Transporte/química , Ribose , Proteínas/metabolismo , Proteínas Periplásmicas de Ligação/química , Conformação Molecular , Proteínas de Bactérias/química
9.
Protein Sci ; 32(1): e4516, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36403089

RESUMO

The ability to design customized proteins to perform specific tasks is of great interest. We are particularly interested in the design of sensitive and specific small molecule ligand-binding proteins for biotechnological or biomedical applications. Computational methods can narrow down the immense combinatorial space to find the best solution and thus provide starting points for experimental procedures. However, success rates strongly depend on accurate modeling and energetic evaluation. Not only intra- but also intermolecular interactions have to be considered. To address this problem, we developed PocketOptimizer, a modular computational protein design pipeline, that predicts mutations in the binding pockets of proteins to increase affinity for a specific ligand. Its modularity enables users to compare different combinations of force fields, rotamer libraries, and scoring functions. Here, we present a much-improved version--PocketOptimizer 2.0. We implemented a cleaner user interface, an extended architecture with more supported tools, such as force fields and scoring functions, a backbone-dependent rotamer library, as well as different improvements in the underlying algorithms. Version 2.0 was tested against a benchmark of design cases and assessed in comparison to the first version. Our results show how newly implemented features such as the new rotamer library can lead to improved prediction accuracy. Therefore, we believe that PocketOptimizer 2.0, with its many new and improved functionalities, provides a robust and versatile environment for the design of small molecule-binding pockets in proteins. It is widely applicable and extendible due to its modular framework. PocketOptimizer 2.0 can be downloaded at https://github.com/Hoecker-Lab/pocketoptimizer.


Assuntos
Algoritmos , Proteínas , Ligantes , Proteínas/química , Desenho Assistido por Computador , Computadores
10.
Protein Sci ; 31(12): e4500, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36336469

RESUMO

The handling of plastic waste and the associated ubiquitous occurrence of microplastic poses one of the biggest challenges of our time. Recent investigations of plastic degrading enzymes have opened new prospects for biological microplastic decomposition as well as recycling applications. For polyethylene terephthalate, in particular, several natural and engineered enzymes are known to have such promising properties. From a previous study that identified new PETase candidates by homology search, we chose the candidate PET6 from the globally distributed, halophilic organism Vibrio gazogenes for further investigation. By mapping the occurrence of Vibrios containing PET6 homologs we demonstrated their ubiquitous prevalence in the pangenome of several Vibrio strains. The biochemical characterization of PET6 showed that PET6 has a comparatively lower activity than other enzymes but also revealed a superior turnover at very high salt concentrations. The crystal structure of PET6 provides structural insights into this adaptation to saline environments. By grafting only a few beneficial mutations from other PET degrading enzymes onto PET6, we increased the activity up to three-fold, demonstrating the evolutionary potential of the enzyme. MD simulations of the variant helped rationalize the mutational effects of those mutants and elucidate the interaction of the enzyme with a PET substrate. With tremendous amounts of plastic waste in the Ocean and the prevalence of Vibrio gazogenes in marine biofilms and estuarine marshes, our findings suggest that Vibrio and the PET6 enzyme are worthy subjects to study the PET degradation in marine environments.


Assuntos
Hidrolases , Vibrio , Humanos , Hidrolases/química , Plásticos , Microplásticos , Vibrio/genética
11.
Bioinformatics ; 38(23): 5199-5205, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36259946

RESUMO

MOTIVATION: Recognition of specific molecules by proteins is a fundamental cellular mechanism and relevant for many applications. Being able to modify binding is a key interest and can be achieved by repurposing established interaction motifs. We were specifically interested in a methodology for the design of peptide binding modules. By leveraging interaction data from known protein structures, we plan to accelerate the design of novel protein or peptide binders. RESULTS: We developed ATLIGATOR-a computational method to support the analysis and design of a protein's interaction with a single side chain. Our program enables the building of interaction atlases based on structures from the PDB. From these atlases pocket definitions are extracted that can be searched for frequent interactions. These searches can reveal similarities in unrelated proteins as we show here for one example. Such frequent interactions can then be grafted onto a new protein scaffold as a starting point of the design process. The ATLIGATOR tool is made accessible through a python API as well as a CLI with python scripts. AVAILABILITY AND IMPLEMENTATION: Source code can be downloaded at github (https://www.github.com/Hoecker-Lab/atligator), installed from PyPI ('atligator') and is implemented in Python 3.


Assuntos
Proteínas , Software , Proteínas/química
12.
Nat Commun ; 13(1): 4348, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35896542

RESUMO

Protein design aims to build novel proteins customized for specific purposes, thereby holding the potential to tackle many environmental and biomedical problems. Recent progress in Transformer-based architectures has enabled the implementation of language models capable of generating text with human-like capabilities. Here, motivated by this success, we describe ProtGPT2, a language model trained on the protein space that generates de novo protein sequences following the principles of natural ones. The generated proteins display natural amino acid propensities, while disorder predictions indicate that 88% of ProtGPT2-generated proteins are globular, in line with natural sequences. Sensitive sequence searches in protein databases show that ProtGPT2 sequences are distantly related to natural ones, and similarity networks further demonstrate that ProtGPT2 is sampling unexplored regions of protein space. AlphaFold prediction of ProtGPT2-sequences yields well-folded non-idealized structures with embodiments and large loops and reveals topologies not captured in current structure databases. ProtGPT2 generates sequences in a matter of seconds and is freely available.


Assuntos
Idioma , Proteínas , Sequência de Aminoácidos , Aminoácidos , Bases de Dados de Proteínas , Humanos , Proteínas/química , Proteínas/genética
13.
Nat Chem Biol ; 18(9): 999-1004, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35836017

RESUMO

Increasingly, it is possible to design peptide and protein assemblies de novo from first principles or computationally. This approach provides new routes to functional synthetic polypeptides, including designs to target and bind proteins of interest. Much of this work has been developed in vitro. Therefore, a challenge is to deliver de novo polypeptides efficiently to sites of action within cells. Here we describe the design, characterisation, intracellular delivery, and subcellular localisation of a de novo synthetic peptide system. This system comprises a dual-function basic peptide, programmed both for cell penetration and target binding, and a complementary acidic peptide that can be fused to proteins of interest and introduced into cells using synthetic DNA. The designs are characterised in vitro using biophysical methods and X-ray crystallography. The utility of the system for delivery into mammalian cells and subcellular targeting is demonstrated by marking organelles and actively engaging functional protein complexes.


Assuntos
Organelas , Peptídeos , Animais , Cristalografia por Raios X , Mamíferos , Organelas/metabolismo , Peptídeos/química
14.
Biol Chem ; 403(5-6): 453, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35355499
15.
Nat Biotechnol ; 40(2): 171-172, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35075248
16.
Biol Chem ; 403(5-6): 535-543, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35089661

RESUMO

Current biomedical research and diagnostics critically depend on detection agents for specific recognition and quantification of protein molecules. Monoclonal antibodies have been used for this purpose over decades and facilitated numerous biological and biomedical investigations. Recently, however, it has become apparent that many commercial reagent antibodies lack specificity or do not recognize their target at all. Thus, synthetic alternatives are needed whose complex designs are facilitated by multidisciplinary approaches incorporating experimental protein engineering with computational modeling. Here, we review the status of such an engineering endeavor based on the modular armadillo repeat protein scaffold and discuss challenges in its implementation.


Assuntos
Peptídeos , Proteínas , Proteínas do Domínio Armadillo/química , Indicadores e Reagentes , Modelos Moleculares , Biblioteca de Peptídeos , Peptídeos/química , Engenharia de Proteínas , Proteínas/química , Tecnologia
17.
Protein Sci ; 31(2): 513-527, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34865275

RESUMO

Protein stability can be fine-tuned by modifying different structural features such as hydrogen-bond networks, salt bridges, hydrophobic cores, or disulfide bridges. Among these, stabilization by salt bridges is a major challenge in protein design and engineering since their stabilizing effects show a high dependence on the structural environment in the protein, and therefore are difficult to predict and model. In this work, we explore the effects on structure and stability of an introduced salt bridge cluster in the context of three different de novo TIM barrels. The salt bridge variants exhibit similar thermostability in comparison with their parental designs but important differences in the conformational stability at 25°C can be observed such as a highly stabilizing effect for two of the proteins but a destabilizing effect to the third. Analysis of the formed geometries of the salt bridge cluster in the crystal structures show either highly ordered salt bridge clusters or only single salt bridges. Rosetta modeling of the salt bridge clusters results in a good prediction of the tendency on stability changes but not the geometries observed in the three-dimensional structures. The results show that despite the similarities in protein fold, the salt bridge clusters differently influence the structural and stability properties of the de novo TIM barrel variants depending on the structural background where they are introduced.


Assuntos
Dobramento de Proteína , Proteínas , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Estabilidade Proteica , Proteínas/química
18.
Polymers (Basel) ; 13(22)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34833184

RESUMO

With macroscopic litter and its degradation into secondary microplastic as a major source of environmental pollution, one key challenge is understanding the pathways from macro- to microplastic by abiotic and biotic environmental impact. So far, little is known about the impact of biota on material properties. This study focuses on recycled, bottle-grade poly(ethylene terephthalate) (r-PET) and the degrading enzyme PETase from Ideonella sakaiensis. Compact tension (CT) specimens were incubated in an enzymatic solution and thermally and mechanically characterized. A time-dependent study up to 96 h revealed the formation of steadily growing colloidal structures. After 96 h incubation, high amounts of BHET dimer were found in a near-surface layer, affecting crack propagation and leading to faster material failure. The results of this pilot study show that enzymatic activity accelerates embrittlement and favors fragmentation. We conclude that PET-degrading enzymes must be viewed as a potentially relevant acceleration factor in macroplastic degradation.

19.
J Biol Chem ; 297(6): 101419, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34801550

RESUMO

A profound understanding of the molecular interactions between receptors and ligands is important throughout diverse research, such as protein design, drug discovery, or neuroscience. What determines specificity and how do proteins discriminate against similar ligands? In this study, we analyzed factors that determine binding in two homologs belonging to the well-known superfamily of periplasmic binding proteins, PotF and PotD. Building on a previously designed construct, modes of polyamine binding were swapped. This change of specificity was approached by analyzing local differences in the binding pocket as well as overall conformational changes in the protein. Throughout the study, protein variants were generated and characterized structurally and thermodynamically, leading to a specificity swap and improvement in affinity. This dataset not only enriches our knowledge applicable to rational protein design but also our results can further lay groundwork for engineering of specific biosensors as well as help to explain the adaptability of pathogenic bacteria.


Assuntos
Escherichia coli K12/química , Proteínas de Escherichia coli/química , Proteínas Periplásmicas de Ligação/química , Receptores de Amina Biogênica/química , Espermidina/química , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Periplásmicas de Ligação/genética , Proteínas Periplásmicas de Ligação/metabolismo , Ligação Proteica , Receptores de Amina Biogênica/genética , Receptores de Amina Biogênica/metabolismo , Espermidina/metabolismo
20.
RSC Chem Biol ; 2(5): 1484-1490, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34704053

RESUMO

The spatial and temporal control of gene expression at the post-transcriptional level is essential in eukaryotic cells and developing multicellular organisms. In recent years optochemical and optogenetic tools have enabled the manipulation and investigation of many steps in the involved processes. However, examples for light-mediated control of eukaryotic mRNA processing and the responsible enzymes are still rare. In particular, methylation of the 5' cap of mRNA is required for ribosome assembly, and the responsible guanine-N7 methyltransferase (MTase) from E. cuniculi (Ecm1) proved suitable for activating translation. Here, we report on a photoswitchable MTase obtained by bridging the substrate-binding cleft of Ecm1 with a tetra-ortho-methoxy-azobenzene. This azobenzene derivative is characterized by efficient trans-to-cis isomerization using red light at 615 nm. Starting from a cysteine-free Ecm1 variant (ΔCys), we used a computational approach to identify suitable conjugation sites for the azobenzene moiety. We created and characterized the four best-ranked variants, each featuring two appropriately positioned cysteines close to the substrate-binding cleft. Conjugating and crosslinking the azobenzene between C149/C155 in a designed Ecm1 variant (VAR3-Az) enabled light-dependent modulation of the MTase activity and showed a 50% higher activity for the cis form than the trans-form of the azobenzene conjugated to VAR3-Az.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...