Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 647: 1573-1585, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30180361

RESUMO

Forest soils represent a large carbon pool and already small changes in this pool may have an important effect on the global carbon cycle. To predict the future development of the soil organic carbon (SOC) pool, well-validated models are needed. We applied the litter and soil carbon model Yasso15 to 1838 plots of the German national forest soil inventory (NFSI) for the period between 1985 and 2014 to enables a direct comparison to the NFSI measurements. In addition, to provide data for the German Greenhouse Gas Inventory, we simulated the development of SOC with Yasso15 applying a climate projection based on the RCP8.5 scenario. The initial model-calculated SOC stocks were adjusted to the measured ones in the NFSI. On average, there were no significant differences between the simulated SOC changes (0.25 ±â€¯0.10 Mg C ha-1 a-1) and the NFSI data (0.39 ±â€¯0.11 Mg C ha-1 a-1). Comparing regional soil-unit-specific aggregates of the SOC changes, the correlation between both methods was significant (r2 = 0.49) although the NFSI values had a wider range and more negative values. In the majority of forest types, representing 75% of plots, both methods produced similar estimates of the SOC balance. Opposite trends were found in mountainous coniferous forests on acidic soils. These soils had lost carbon according to the NFSI (-0.89 ±â€¯0.30 Mg C ha-1 a-1) whereas they had gained it according to Yasso15 (0.21 ±â€¯0.10 Mg C ha-1 a-1). In oligotrophic pine forests, the NFSI indicated high SOC gains (1.36 ±â€¯0.17 Mg C ha-1 a-1) and Yasso15 much smaller (0.29 ±â€¯0.10 Mg C ha-1 a-1). According to our results, German forest soils are a large carbon sink. The application of the Yasso15 model supports the results of the NFSI. The sink strength differs between forest types possibly because of differences in organic matter stabilisation.

2.
Ecol Appl ; 21(2): 391-401, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21563571

RESUMO

We simulated the effect of prolonged dry summer periods by lowering the water table on three manipulation plots (D(1-3)) in a minerotrophic fen in southeastern Germany in three years (2006-2008). The water table at this site was lowered by drainage and by excluding precipitation; three nonmanipulated control plots (C(1-3)) served as a reference. We found no significant differences in soil respiration (R(Soil)), gross primary production (GPP), or aboveground respiration (R(AG)) between the C(1-3) and D(1-3) plots in any of the measurement years. The water table on the control plots was naturally low, with a median water table (2006-2008) of 8 cm below the surface, and even lower during summer when respiratory activity was highest, with median values (C(1-3)) between 11 and 19 cm below the surface. If it is assumed that oxygen availability in the uppermost 10 cm was not limited by the location of the water table, manipulative lowering of the water table most likely increased oxygen availability only in deeper peat layers where we expect R(Soil) to be limited by poor substrate quality rather than anoxia. This could explain the lack of a manipulation effect. In a second approach, we estimated the influence of the water table on R(Soil) irrespective of treatment. The results showed a significant correlation between R(Soil) and water table, but with R(Soil) decreasing at lower water tables rather than increasing. We thus conclude that decomposition in the litter layer is not limited by waterlogging in summer, and deeper peat layers bear no significant decomposition potential due to poor substrate quality. Consequently, we do not expect enhanced C losses from this site due to increasing frequency of dry summers. Assimilation and respiration of aboveground vegetation were not affected by water table fluctuations between 10 and >60 cm depth, indicating the lack of stress resulting from either anoxia (high water table) or drought (low water table).


Assuntos
Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Estações do Ano , Água , Áreas Alagadas , Biomassa , Alemanha , Plantas/classificação , Plantas/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...