Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 13(29): 6852-6858, 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35861316

RESUMO

The application of external electric and magnetic fields is a powerful tool for aligning molecules in a controlled way, if the thermal fluctuations are small. Here we demonstrate that the same holds for internal electric fields in a molecular cluster. The electric field of a single molecular dipole, HCl, is used to manipulate the aggregation mechanism of subsequently added acetonitrile molecules. As a result, we could form exotic linear acetonitrile (CH3CN) chains at 0.37 K, as confirmed by infrared spectroscopy in superfluid helium nanodroplets. These linear chains are not observed in the absence of HCl and can be observed only when the internal electric field created by an HCl molecule is present. The accompanying simulations provide mechanistic insights into steric control, explain the selectivity of the process, and show that non-additive electronic polarization effects systematically enhance the dipole moment of these linear chains. Thus, adding more CH3CN monomers even supports further quasi-linear chain growth.

2.
Phys Chem Chem Phys ; 23(37): 20875-20882, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34523631

RESUMO

A multitude of distinct physical processes and molecular mechanisms have been introduced in the past in an effort to understand the unusual dielectric loss spectrum of water with its pronounced peak at roughly 20 GHz. Our computer simulations including ab initio molecular dynamics provide no evidence for a major impact of cage dynamics or local-diffusive motion on the lineshape below 200 GHz. We also show that the collective motion of hundreds of water molecules and/or their significant diffusive displacements are not required. Instead, the dielectric relaxation of water up to about 200 GHz can be quantitatively described in terms of two unimodal and smoothly decaying spectral contributions.

3.
ACS Omega ; 6(19): 12676-12683, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34056419

RESUMO

Charge separation under solvation stress conditions is a fundamental process that comes in many forms in doped water clusters. Yet, the mechanism of intramolecular charge separation, where constraints due to the molecular structure might be intricately tied to restricted solvation structures, remains largely unexplored. Microhydrated amino acids are such paradigmatic molecules. Ab initio simulations are carried out at 300 K in the frameworks of metadynamics sampling and thermodynamic integration to map the thermal mechanisms of zwitterionization using Gly(H2O) n with n = 4 and 10. In both cases, a similar water-mediated proton transfer chain mechanism is observed; yet, detailed analyses of thermodynamics and kinetics demonstrate that the charge-separated zwitterion is the preferred species only for n = 10 mainly due to kinetic stabilization. Structural analyses disclose that bifurcated H-bonded water bridges, connecting the cationic and anionic sites in the fluctuating microhydration network at room temperature, are enhanced in the transition-state ensemble exclusively for n = 10 and become overwhelmingly abundant in the stable zwitterion. The findings offer potential insights into charge separation under solvation stress conditions beyond the present example.

4.
Phys Chem Chem Phys ; 23(19): 11355-11365, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-33972970

RESUMO

Trimethylamine N-oxide (TMAO) is a well known osmolyte in nature, which is used by deep sea fish to stabilize proteins against High Hydrostatic Pressure (HHP). We present a combined ab initio molecular dynamics, force field molecular dynamics, and THz absorption study of TMAO in water up to 12 kbar to decipher its solvation properties upon extreme compression. On the hydrophilic oxygen side of TMAO, AIMD simulations at 1 bar and 10 kbar predict a change of the coordination number from a dominating TMAO·(H2O)3 complex at ambient conditions towards an increased population of a TMAO·(H2O)4 complex at HHP conditions. This increase of the TMAO-oxygen coordination number goes in line with a weakening of the local hydrogen bond network, spectroscopic shifts and intensity changes of the corresponding intermolecular THz bands. Using a pressure-dependent HHP force field, FFMD simulations predict a significant increase of hydrophobic hydration from 1 bar up to 4-5 kbar, which levels off at higher pressures up to 10 kbar. THz spectroscopic data reveal two important pressure regimes with spectroscopic inflection points of the dominant intermolecular modes: The first regime (1.5-2 kbar) is barely recognizable in the simulation data. However, it relates well with the observation that the apparent molar volume of solvated TMAO is nearly constant in the biologically relevant pressure range up to 1 kbar as found in the deepest habitats on Earth in the ocean. The second inflection point around 4-5 kbar is related to the amount of hydrophobic hydration as predicted by the FFMD simulations. In particular, the blueshift of the intramolecular CNC bending mode of TMAO at about 390 cm-1 is the spectroscopic signature of increasingly pronounced pressure-induced changes in the solvation shell of TMAO. Thus, the CNC bend can serve as local pressure sensor in the multi-kbar pressure regime.

5.
Biophys Chem ; 257: 106258, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31881504

RESUMO

Recent methodological progress in quantum-chemical calculations using the "embedded cluster reference interaction site model" (EC-RISM) integral equation theory is reviewed in the context of applying it as a solvation model for calculating pressure-dependent thermodynamic and spectroscopic properties of molecules immersed in water. The methodology is based on self-consistent calculations of electronic and solvation structure around dissolved molecules where pressure enters the equations via an appropriately chosen solvent response function and the pure solvent density. Besides specification of a dispersion-repulsion force field for solute-solvent interactions, the EC-RISM approach derives the electrostatic interaction contributions directly from the wave function. We further develop and apply the method to a variety of benchmark cases for which computational or experimental reference data are either available in the literature or are generated specifically for this purpose in this work. Starting with an enhancement to predict hydration free energies at non-ambient pressures, which is the basis for pressure-dependent molecular population estimation, we demonstrate the performance on the calculation of the autoionization constant of water. Spectroscopic problems are addressed by studying the biologically relevant small osmolyte TMAO (trimethylamine N-oxide). Pressure-dependent NMR shifts are predicted and compared to experiments taking into account proper computational referencing methods that extend earlier work. The experimentally observed IR blue-shifts of certain vibrational bands of TMAO as well as of the cyanide anion are reproduced by novel methodology that allows for weighing equilibrium and non-equilibrium solvent relaxation effects. Taken together, the model systems investigated allow for an assessment of the reliability of the EC-RISM approach for studying pressure-dependent biophysical processes.


Assuntos
Modelos Químicos , Espectroscopia de Ressonância Magnética , Metilaminas/síntese química , Metilaminas/química , Simulação de Dinâmica Molecular , Pressão , Teoria Quântica
6.
Biophys Chem ; 254: 106260, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31522071

RESUMO

Molecular simulations based on classical force fields are a powerful method for shedding light on the complex behavior of biomolecules in solution. When cosolutes are present in addition to water and biomolecules, subtle balances of weak intermolecular forces have to be accounted for. This imposes high demands on the quality of the underlying force fields, and therefore force field development for small cosolutes is still an active field. Here, we present the development of a new urea force field from studies of urea solutions at ambient and elevated hydrostatic pressures based on a combination of experimental and theoretical approaches. Experimental densities and solvation shell properties from ab initio molecular dynamics simulations at ambient conditions served as the target properties for the force field optimization. Since urea is present in many marine life forms, elevated hydrostatic pressure was rigorously addressed: densities at high pressure were measured by vibrating tube densitometry up to 500 bar and by X-ray absorption up to 5 kbar. Densities were determined by the perturbed-chain statistical associating fluid theory equation of state. Solvation properties were determined by embedded cluster integral equation theory and ab initio molecular dynamics. Our new force field is able to capture the properties of urea solutions at high pressures without further high-pressure adaption, unlike trimethylamine-N-oxide, for which a high-pressure adaption is necessary.


Assuntos
Simulação de Dinâmica Molecular , Ureia/química , Pressão , Soluções/química , Termodinâmica , Água/química
7.
Biophys Chem ; 253: 106222, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31421516

RESUMO

We present measurements, molecular dynamics (MD) simulations, and predictions using Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) of the density of aqueous solutions in a pressure range from 1 bar to 5000 bar, a pressure regime that is highly relevant for both biochemical applications and the fundamental understanding of solvation. The accurate determination of density data of pressurized solutions remains challenging. We determined relative density changes from the variations in X-ray absorption through the sample and developed a new water parameter set for PC-SAFT modeling that is appropriate for high pressure conditions in the kilobar regime. As a showcase, we studied trimethylamine N-oxide (TMAO) solutions and demonstrated that their compressibility decreases with the TMAO content. This result is linked to the stabilizing effect of TMAO on the local H-bond network of water. Experiments and calculations, which represent two independent methods, are in very good agreement and are in accordance with results of force field molecular dynamics simulations of the same systems.


Assuntos
Metilaminas/química , Simulação de Dinâmica Molecular , Ligação de Hidrogênio , Modelos Estatísticos , Soluções
8.
Phys Chem Chem Phys ; 20(33): 21257-21261, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30087963

RESUMO

A common feature of water close to nonpolar particles, at hydrophobic interfaces, and at the surface to its vapor is the signature of ice-like orientated water molecules. By forming ice-like orientations, the number of unsatisfied hydrogen bonds is minimized and thus the energetic penalty is reduced. To what extent these structural motifs correspond to the existence of a real ice layer has been a long-lasting controversial topic, and the view emerges that the solvation layer is only poorly described as being ice. In this work we present new insight into the ice-like conformations of water at a hydrophobic interface by a detailed analysis of molecular dynamics simulations of water at a hydrophobic self-assembled monolayer under pressures from 1 bar up to 10 kbar. We show by analyzing the ice-like order on different length scales that - despite different signatures of ice-like order - the actual density of ice-like structures is negligible at ambient pressure, but significantly grows with increasing pressure contrary to bulk hexagonal ice, which is destabilized by elevated pressure. At 10 kbar, the interfacial water is of significantly ice-like order.

9.
J Phys Chem B ; 122(22): 5972-5983, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29727568

RESUMO

The intermolecular interactions and dynamics of aqueous 1,1-dimethyurea (1,1-DMU) solutions were studied by examining the concentration dependence of the solvent and solute relaxations detected by dielectric spectroscopy. Molecular dynamics simulations were carried out to facilitate interpretation of the dielectric data and to get a deeper insight into the behavior of the system components at the microscopic level. In particular, the simulations allowed for explaining the main differences between the dielectric spectra of aqueous solutions of 1,1-DMU and of its structural isomer 1,3-DMU. Similar to the previously studied compounds urea and 1,3-DMU, 1,1-DMU forms rather stable hydrates. This is evidenced by an effective solute dipole moment that significantly exceeds the value of a neat 1,1-DMU molecule, indicating pronounced parallel alignment of the solute dipole with two to three H2O moments. The MD simulations revealed that the involved water molecules form strong hydrogen bonds with the carbonyl group. However, in contrast to 1,3-DMU, it was not possible to resolve a "slow-water" mode in the dielectric spectra, suggesting rather different hydration-shell dynamics for 1,1-DMU as confirmed by the simulations. In contrast to aqueous urea and 1,3-DMU, addition of 1,1-DMU to water leads to a weak decrease of the static permittivity. This is explained by the emergence of antiparallel dipole-dipole correlations among 1,1-DMU hydrates with rising concentration.

10.
Angew Chem Int Ed Engl ; 56(42): 12958-12961, 2017 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-28816388

RESUMO

We have gained new insight into the so-called hydrophobic gap, a molecularly thin region of decreased electron density at the interface between water and a solid hydrophobic surface, by X-ray reflectivity experiments and molecular dynamics simulations at different hydrostatic pressures. Pressure variations show that the hydrophobic gap persists up to a pressure of 5 kbar. The electron depletion in the interfacial region strongly decreases with an increase in pressure, indicating that the interfacial region is compressed more strongly than bulk water. The decrease is most significant up to 2 kbar; beyond that, the pressure response of the depletion is less pronounced.

11.
J Chem Phys ; 144(14): 144104, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-27083705

RESUMO

Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures--while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatment of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute's response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields.


Assuntos
Metilaminas/química , Simulação de Dinâmica Molecular , Pressão , Soluções , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...