Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020165

RESUMO

Several immune pathways in humans conjugate ubiquitin-like proteins to virus and host molecules as a means of antiviral defence1-5. Here we studied an antiphage defence system in bacteria, comprising a ubiquitin-like protein, ubiquitin-conjugating enzymes E1 and E2, and a deubiquitinase. We show that during phage infection, this system specifically conjugates the ubiquitin-like protein to the phage central tail fibre, a protein at the tip of the tail that is essential for tail assembly as well as for recognition of the target host receptor. Following infection, cells encoding this defence system release a mixture of partially assembled, tailless phage particles and fully assembled phages in which the central tail fibre is obstructed by the covalently attached ubiquitin-like protein. These phages show severely impaired infectivity, explaining how the defence system protects the bacterial population from the spread of phage infection. Our findings demonstrate that conjugation of ubiquitin-like proteins is an antiviral strategy conserved across the tree of life.

2.
Cell ; 186(9): 1863-1876.e16, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37030292

RESUMO

Over the past few years, numerous anti-phage defense systems have been discovered in bacteria. Although the mechanism of defense for some of these systems is understood, a major unanswered question is how these systems sense phage infection. To systematically address this question, we isolated 177 phage mutants that escape 15 different defense systems. In many cases, these escaper phages were mutated in the gene sensed by the defense system, enabling us to map the phage determinants that confer sensitivity to bacterial immunity. Our data identify specificity determinants of diverse retron systems and reveal phage-encoded triggers for multiple abortive infection systems. We find general themes in phage sensing and demonstrate that mechanistically diverse systems have converged to sense either the core replication machinery of the phage, phage structural components, or host takeover mechanisms. Combining our data with previous findings, we formulate key principles on how bacterial immune systems sense phage invaders.


Assuntos
Bactérias , Bacteriófagos , Bactérias/genética , Bactérias/virologia , Bacteriófagos/genética , Sistemas CRISPR-Cas , Proteínas Virais/metabolismo , Mutação , Fenômenos Fisiológicos Bacterianos
3.
RNA ; 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36328526

RESUMO

New methods for the global identification of RNA-protein interactions have led to greater recognition of the abundance and importance of RNA-binding proteins (RBPs) in bacteria. Here, we expand this tool kit by developing SEC-seq, a method based on a similar concept as the established Grad-seq approach. In Grad-seq, cellular RNA and protein complexes of a bacterium of interest are separated in a glycerol gradient, followed by high-throughput RNA-sequencing and mass spectrometry analyses of individual gradient fractions. New RNA-protein complexes are predicted based on the similarity of their elution profiles. In SEC-seq, we have replaced the glycerol gradient with separation by size exclusion chromatography, which shortens operation times and offers greater potential for automation. Applying SEC-seq to Escherichia coli, we find that the method provides a higher resolution than Grad-seq in the lower molecular weight range up to ~500 kDa. This is illustrated by the ability of SEC-seq to resolve two distinct, but similarly sized complexes of the global translational repressor CsrA with either of its antagonistic small RNAs, CsrB and CsrC. We also characterized changes in the SEC-seq profiles of the small RNA MicA upon deletion of its RNA chaperones Hfq and ProQ and investigated the redistribution of these two proteins upon RNase treatment. Overall, we demonstrate that SEC-seq is a tractable and reproducible method for the global profiling of bacterial RNA-protein complexes that offers the potential to discover yet-unrecognized associations between bacterial RNAs and proteins.

4.
Nucleic Acids Res ; 50(22): e128, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36229039

RESUMO

Ribosome profiling (Ribo-seq) is a powerful method for the transcriptome-wide assessment of protein synthesis rates and the study of translational control mechanisms. Yet, Ribo-seq also has limitations. These include difficulties with the analysis of translation-modulating molecules such as antibiotics, which are often toxic or challenging to deliver into living cells. Here, we have developed in vitro Ribo-seq (INRI-seq), a cell-free method to analyze the translational landscape of a fully customizable synthetic transcriptome. Using Escherichia coli as an example, we show how INRI-seq can be used to analyze the translation initiation sites of a transcriptome of interest. We also study the global impact of direct translation inhibition by antisense peptide nucleic acid (PNA) to analyze PNA off-target effects. Overall, INRI-seq presents a scalable, sensitive method to study translation initiation in a transcriptome-wide manner without the potentially confounding effects of extracting ribosomes from living cells.


Assuntos
Iniciação Traducional da Cadeia Peptídica , Biossíntese de Proteínas , Proteômica/métodos , Ribossomos/genética , Ribossomos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma , Ácidos Nucleicos Peptídicos/farmacologia
5.
Cell Host Microbe ; 30(11): 1556-1569.e5, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36302390

RESUMO

Bacterial anti-phage systems are frequently clustered in microbial genomes, forming defense islands. This property enabled the recent discovery of multiple defense systems based on their genomic co-localization with known systems, but the full arsenal of anti-phage mechanisms remains unknown. We report the discovery of 21 defense systems that protect bacteria from phages, based on computational genomic analyses and phage-infection experiments. We identified multiple systems with domains involved in eukaryotic antiviral immunity, including those homologous to the ubiquitin-like ISG15 protein, dynamin-like domains, and SEFIR domains, and show their participation in bacterial defenses. Additional systems include domains predicted to manipulate DNA and RNA molecules, alongside toxin-antitoxin systems shown here to function in anti-phage defense. These systems are widely distributed in microbial genomes, and in some bacteria, they form a considerable fraction of the immune arsenal. Our data substantially expand the inventory of defense systems utilized by bacteria to counteract phage infection.


Assuntos
Bacteriófagos , Bacteriófagos/genética , Bactérias/genética , Genoma Microbiano , Genômica , Sistema Imunitário
6.
FEMS Microbiol Rev ; 46(5)2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35388892

RESUMO

Over the past two decades, small noncoding RNAs (sRNAs) that regulate mRNAs by short base pairing have gone from a curiosity to a major class of post-transcriptional regulators in bacteria. They are integral to many stress responses and regulatory circuits, affecting almost all aspects of bacterial life. Following pioneering sRNA searches in the early 2000s, the field quickly focused on conserved sRNA genes in the intergenic regions of bacterial chromosomes. Yet, it soon emerged that there might be another rich source of bacterial sRNAs-processed 3' end fragments of mRNAs. Several such 3' end-derived sRNAs have now been characterized, often revealing unexpected, conserved functions in diverse cellular processes. Here, we review our current knowledge of these 3' end-derived sRNAs-their biogenesis through ribonucleases, their molecular mechanisms, their interactions with RNA-binding proteins such as Hfq or ProQ and their functional scope, which ranges from acting as specialized regulators of single metabolic genes to constituting entire noncoding arms in global stress responses. Recent global RNA interactome studies suggest that the importance of functional 3' end-derived sRNAs has been vastly underestimated and that this type of cross-regulation between genes at the mRNA level is more pervasive in bacteria than currently appreciated.


Assuntos
RNA Bacteriano , Pequeno RNA não Traduzido , Bactérias/genética , Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Fator Proteico 1 do Hospedeiro/genética , Fator Proteico 1 do Hospedeiro/metabolismo , RNA Bacteriano/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/química , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo
7.
Methods Mol Biol ; 2300: 183-201, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33792881

RESUMO

The complexome of a cell is the entirety of its complexes. Complexome capture studies have mostly focused on protein-protein interactions, which has left a gap in our knowledge of the global interactions of RNAs. To overcome these limitations, we recently introduced gradient profiling by sequencing (Grad-seq), which analyzes in a high-throughput fashion soluble cellular complexes after their separation in a glycerol gradient by fraction-wise RNA-seq and mass spectrometry. Here, we describe a detailed Grad-seq protocol for Streptococcus pneumoniae, which should also be applicable to other bacterial species.


Assuntos
RNA Bacteriano/análise , Proteínas de Ligação a RNA/análise , Streptococcus pneumoniae/genética , Proteínas de Bactérias/análise , Proteínas de Bactérias/genética , Centrifugação com Gradiente de Concentração , Glicerol/química , Sequenciamento de Nucleotídeos em Larga Escala , Espectrometria de Massas , RNA Bacteriano/genética , Proteínas de Ligação a RNA/genética , Análise de Sequência de RNA
8.
Microlife ; 2: uqab004, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37223250

RESUMO

Much of our current knowledge about cellular RNA-protein complexes in bacteria is derived from analyses in gram-negative model organisms, with the discovery of RNA-binding proteins (RBPs) generally lagging behind in Gram-positive species. Here, we have applied Grad-seq analysis of native RNA-protein complexes to a major Gram-positive human pathogen, Clostridioides difficile, whose RNA biology remains largely unexplored. Our analysis resolves in-gradient distributions for ∼88% of all annotated transcripts and ∼50% of all proteins, thereby providing a comprehensive resource for the discovery of RNA-protein and protein-protein complexes in C. difficile and related microbes. The sedimentation profiles together with pulldown approaches identify KhpB, previously identified in Streptococcus pneumoniae, as an uncharacterized, pervasive RBP in C. difficile. Global RIP-seq analysis establishes a large suite of mRNA and small RNA targets of KhpB, similar to the scope of the Hfq targetome in C. difficile. The KhpB-bound transcripts include several functionally related mRNAs encoding virulence-associated metabolic pathways and toxin A whose transcript levels are observed to be increased in a khpB deletion strain. Moreover, the production of toxin protein is also increased upon khpB deletion. In summary, this study expands our knowledge of cellular RNA protein interactions in C. difficile and supports the emerging view that KhpB homologues constitute a new class of globally acting RBPs in Gram-positive bacteria.

9.
Nucleic Acids Res ; 48(16): 9301-9319, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32813020

RESUMO

Stable protein complexes, including those formed with RNA, are major building blocks of every living cell. Escherichia coli has been the leading bacterial organism with respect to global protein-protein networks. Yet, there has been no global census of RNA/protein complexes in this model species of microbiology. Here, we performed Grad-seq to establish an RNA/protein complexome, reconstructing sedimentation profiles in a glycerol gradient for ∼85% of all E. coli transcripts and ∼49% of the proteins. These include the majority of small noncoding RNAs (sRNAs) detectable in this bacterium as well as the general sRNA-binding proteins, CsrA, Hfq and ProQ. In presenting use cases for utilization of these RNA and protein maps, we show that a stable association of RyeG with 30S ribosomes gives this seemingly noncoding RNA of prophage origin away as an mRNA of a toxic small protein. Similarly, we show that the broadly conserved uncharacterized protein YggL is a 50S subunit factor in assembled 70S ribosomes. Overall, this study crucially extends our knowledge about the cellular interactome of the primary model bacterium E. coli through providing global RNA/protein complexome information and should facilitate functional discovery in this and related species.


Assuntos
Complexos Multiproteicos/genética , Mapas de Interação de Proteínas/genética , Pequeno RNA não Traduzido/genética , RNA/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/genética , Fator Proteico 1 do Hospedeiro/genética , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/genética , Ribossomos/genética
10.
EMBO J ; 39(9): e103852, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32227509

RESUMO

RNA-protein interactions are the crucial basis for many steps of bacterial gene expression, including post-transcriptional control by small regulatory RNAs (sRNAs). In stark contrast to recent progress in the analysis of Gram-negative bacteria, knowledge about RNA-protein complexes in Gram-positive species remains scarce. Here, we used the Grad-seq approach to draft a comprehensive landscape of such complexes in Streptococcus pneumoniae, in total determining the sedimentation profiles of ~ 88% of the transcripts and ~ 62% of the proteins of this important human pathogen. Analysis of in-gradient distributions and subsequent tag-based protein capture identified interactions of the exoribonuclease Cbf1/YhaM with sRNAs that control bacterial competence for DNA uptake. Unexpectedly, the nucleolytic activity of Cbf1 stabilizes these sRNAs, thereby promoting their function as repressors of competence. Overall, these results provide the first RNA/protein complexome resource of a Gram-positive species and illustrate how this can be utilized to identify new molecular factors with functions in RNA-based regulation of virulence-relevant pathways.


Assuntos
Pequeno RNA não Traduzido/genética , Análise de Sequência de RNA/métodos , Streptococcus pneumoniae/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/genética , Proteínas de Ligação a RNA/metabolismo
11.
EcoSal Plus ; 9(1)2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32213244

RESUMO

The last few decades have led to an explosion in our understanding of the major roles that small regulatory RNAs (sRNAs) play in regulatory circuits and the responses to stress in many bacterial species. Much of the foundational work was carried out with Escherichia coli and Salmonella enterica serovar Typhimurium. The studies of these organisms provided an overview of how the sRNAs function and their impact on bacterial physiology, serving as a blueprint for sRNA biology in many other prokaryotes. They also led to the development of new technologies. In this chapter, we first summarize how these sRNAs were identified, defining them in the process. We discuss how they are regulated and how they act and provide selected examples of their roles in regulatory circuits and the consequences of this regulation. Throughout, we summarize the methodologies that were developed to identify and study the regulatory RNAs, most of which are applicable to other bacteria. Newly updated databases of the known sRNAs in E. coli K-12 and S. enterica Typhimurium SL1344 serve as a reference point for much of the discussion and, hopefully, as a resource for readers and for future experiments to address open questions raised in this review.


Assuntos
Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Pequeno RNA não Traduzido/genética , Salmonella enterica/genética , Transativadores , Perfilação da Expressão Gênica , RNA Bacteriano/genética , Análise de Sequência de RNA
12.
Mol Cell ; 70(5): 785-799, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29358079

RESUMO

Bacteria are an exceedingly diverse group of organisms whose molecular exploration is experiencing a renaissance. While the classical view of bacterial gene expression was relatively simple, the emerging view is more complex, encompassing extensive post-transcriptional control involving riboswitches, RNA thermometers, and regulatory small RNAs (sRNAs) associated with the RNA-binding proteins CsrA, Hfq, and ProQ, as well as CRISPR/Cas systems that are programmed by RNAs. Moreover, increasing interest in members of the human microbiota and environmental microbial communities has highlighted the importance of understudied bacterial species with largely unknown transcriptome structures and RNA-based control mechanisms. Collectively, this creates a need for global RNA biology approaches that can rapidly and comprehensively analyze the RNA composition of a bacterium of interest. We review such approaches with a focus on RNA-seq as a versatile tool to investigate the different layers of gene expression in which RNA is made, processed, regulated, modified, translated, and turned over.


Assuntos
Bactérias/genética , Perfilação da Expressão Gênica/métodos , Genoma Bacteriano , RNA Bacteriano/genética , Análise de Sequência de RNA/métodos , Transcriptoma , Bactérias/metabolismo , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Conformação de Ácido Nucleico , Biossíntese de Proteínas , Processamento Pós-Transcricional do RNA , Estabilidade de RNA , RNA Bacteriano/química , RNA Bacteriano/classificação , RNA Bacteriano/metabolismo , Relação Estrutura-Atividade
13.
Curr Opin Microbiol ; 39: 152-160, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29179042

RESUMO

The identification of new RNA functions and the functional annotation of transcripts in genomes represent exciting yet challenging endeavours of modern biology. Crucial insights into the biological roles of RNA molecules can be gained from the identification of the proteins with which they form specific complexes. Modern interactome techniques permit to profile RNA-protein interactions in a genome-wide manner and identify new RNA classes associated with globally acting RNA-binding proteins. Applied to a variety of organisms, these methods are already revolutionising our understanding of RNA-mediated biological processes. Here, we focus on one such approach-Gradient sequencing or Grad-seq-which has recently guided the discovery of protein ProQ and its associated small RNAs as a new domain of post-transcriptional control in bacteria.


Assuntos
Proteínas de Bactérias , Genômica , RNA Bacteriano , Proteínas de Ligação a RNA , Análise de Sequência de RNA , Transcriptoma
14.
Front Microbiol ; 8: 975, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28611765

RESUMO

Plant growth can be affected by soil bacteria. In turn, plants are known to influence soil bacteria through rhizodeposits and changes in abiotic conditions. We aimed to quantify the phylotype richness and relative abundance of rhizosphere bacteria that are actually influenced in a plant species-specific manner and to determine the role of the disproportionately large diversity of low-abundance bacteria belonging to the rare biosphere (<0.1 relative abundance) in this process. In addition, we aimed to determine whether plant phylogeny has an influence on the plant species-specific rhizosphere bacterial community. For this purpose, 19 herbaceous plant species from five different plant orders were grown in a common soil substrate. Bacterial communities in the initial soil substrate and the established rhizosphere soils were compared by 16S rRNA gene amplicon sequencing. Only a small number of bacterial operational taxonomic units (OTUs, 97% sequence identity) responded either positively (ca. 1%) or negatively (ca. 1%) to a specific plant species. On average, 91% of plant-specific positive response OTUs comprised bacteria belonging to the rare biosphere, highlighting that low-abundance populations are metabolically active in the rhizosphere. In addition, low-abundance OTUs were in terms of their summed relative abundance major drivers of the bacterial phyla composition across the rhizosphere of all tested plant species. However, no effect of plant phylogeny could be observed on the established rhizosphere bacterial communities, neither when considering differences in the overall established rhizosphere communities nor when considering plant species-specific responders only. Our study provides a quantitative assessment of the effect of plants on their rhizosphere bacteria across multiple plant orders. Plant species-specific effects on soil bacterial communities involved only 18-111 bacterial OTUs out of several 1000s; this minority may potentially impact plant growth in plant-bacteria interactions.

15.
EMBO J ; 36(3): 245-247, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28031253
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...