Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Vis Sci Technol ; 11(9): 25, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36156729

RESUMO

Purpose: To evaluate the feasibility of automated segmentation of pigmented choroidal lesions (PCLs) in optical coherence tomography (OCT) data and compare the performance of different deep neural networks. Methods: Swept-source OCT image volumes were annotated pixel-wise for PCLs and background. Three deep neural network architectures were applied to the data: the multi-dimensional gated recurrent units (MD-GRU), the V-Net, and the nnU-Net. The nnU-Net was used to compare the performance of two-dimensional (2D) versus three-dimensional (3D) predictions. Results: A total of 121 OCT volumes were analyzed (100 normal and 21 PCLs). Automated PCL segmentations were successful with all neural networks. The 3D nnU-Net predictions showed the highest recall with a mean of 0.77 ± 0.22 (MD-GRU, 0.60 ± 0.31; V-Net, 0.61 ± 0.25). The 3D nnU-Net predicted PCLs with a Dice coefficient of 0.78 ± 0.13, outperforming MD-GRU (0.62 ± 0.23) and V-Net (0.59 ± 0.24). The smallest distance to the manual annotation was found using 3D nnU-Net with a mean maximum Hausdorff distance of 315 ± 172 µm (MD-GRU, 1542 ± 1169 µm; V-Net, 2408 ± 1060 µm). The 3D nnU-Net showed a superior performance compared with stacked 2D predictions. Conclusions: The feasibility of automated deep learning segmentation of PCLs was demonstrated in OCT data. The neural network architecture had a relevant impact on PCL predictions. Translational Relevance: This work serves as proof of concept for segmentations of choroidal pathologies in volumetric OCT data; improvements are conceivable to meet clinical demands for the diagnosis, monitoring, and treatment evaluation of PCLs.


Assuntos
Aprendizado Profundo , Tomografia de Coerência Óptica , Corioide/diagnóstico por imagem , Estudos de Viabilidade , Redes Neurais de Computação , Tomografia de Coerência Óptica/métodos
2.
PLoS One ; 14(8): e0220063, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31419240

RESUMO

PURPOSE: To benchmark the human and machine performance of spectral-domain (SD) and swept-source (SS) optical coherence tomography (OCT) image segmentation, i.e., pixel-wise classification, for the compartments vitreous, retina, choroid, sclera. METHODS: A convolutional neural network (CNN) was trained on OCT B-scan images annotated by a senior ground truth expert retina specialist to segment the posterior eye compartments. Independent benchmark data sets (30 SDOCT and 30 SSOCT) were manually segmented by three classes of graders with varying levels of ophthalmic proficiencies. Nine graders contributed to benchmark an additional 60 images in three consecutive runs. Inter-human and intra-human class agreement was measured and compared to the CNN results. RESULTS: The CNN training data consisted of a total of 6210 manually segmented images derived from 2070 B-scans (1046 SDOCT and 1024 SSOCT; 630 C-Scans). The CNN segmentation revealed a high agreement with all grader groups. For all compartments and groups, the mean Intersection over Union (IOU) score of CNN compartmentalization versus group graders' compartmentalization was higher than the mean score for intra-grader group comparison. CONCLUSION: The proposed deep learning segmentation algorithm (CNN) for automated eye compartment segmentation in OCT B-scans (SDOCT and SSOCT) is on par with manual segmentations by human graders.


Assuntos
Tomografia de Coerência Óptica/estatística & dados numéricos , Algoritmos , Inteligência Artificial/estatística & dados numéricos , Benchmarking/estatística & dados numéricos , Corioide/diagnóstico por imagem , Aprendizado Profundo/estatística & dados numéricos , Humanos , Interpretação de Imagem Assistida por Computador/estatística & dados numéricos , Redes Neurais de Computação , Variações Dependentes do Observador , Retina/diagnóstico por imagem , Esclera/diagnóstico por imagem , Corpo Vítreo/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...