Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 160(21)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38832745

RESUMO

Grand-canonical (GC) constant-potential methods within an implicit solvent environment provide a general approach to compute the potential-dependent energetics at electrified solid-liquid interfaces with first-principles density-functional theory. Here, we use a mindfully chosen set of 27 isostructural 2D metal halides MX2 to analyze the variation of this energetics when the electronic structure changes from metallic to semiconducting and insulating state. Apart from expectable changes due to the opening up of the electronic bandgap, the calculations also show an increasing sensitivity to the numerical Brillouin zone integration and electronic smearing, which imposes computational burdens in practice. We rationalize these findings within the picture of the total interfacial capacitance arising from a series connection of the electrochemical double-layer capacitance and the so-called quantum capacitance resulting from the filling of electronic states inside the electrode. For metals, the electrochemical double-layer capacitance dominates at all potentials, and the entire potential drop takes place in the electrolyte. For semiconductors, the potential drop occurs instead fully or partially inside the electrode at potentials within or just outside the bandgap. For 2D semiconductors, the increased sensitivity to numerical parameters then results from the concomitantly increased contribution of the quantum capacitance that is harder to converge. Fortunately, this understanding motivates a simple extension of the CHE + DL approximation for metals, which provides the approximate GC energetics of 2D semiconductors using only quantities that can be obtained from computationally undemanding calculations at the point of zero charge and a generic double-layer capacitance.

2.
J Phys Condens Matter ; 33(26)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33848987

RESUMO

Based on a mean-field description of thermodynamic cyclic voltammograms (CVs), we analyze here in full generality, how CV peak positions and shapes are related to the underlying interface energetics, in particular when also including electrostatic double layer (DL) effects. We show in particular, how non-Nernstian behaviour is related to capacitive DL charging, and how this relates to common adsorbate-centered interpretations such as a changed adsorption energetics due to dipole-field interactions and the electrosorption valency - the number of exchanged electrons upon electrosorption per adsorbate. Using Ag(111) in halide-containing solutions as test case, we demonstrate that DL effects can introduce peak shifts that are already explained by rationalizing the interaction of isolated adsorbates with the interfacial fields, while alterations of the peak shape are mainly driven by the coverage-dependence of the adsorbate dipoles. In addition, we analyze in detail how changing the experimental conditions such as the ion concentrations in the solvent but also of the background electrolyte can affect the CV peaks via their impact on the potential drop in the DL and the DL capacitance, respectively. These results suggest new routes to analyze experimental CVs and use of those for a detailed assessment of the accuracy of atomistic models of electrified interfaces e.g. with and without explicitly treated interfacial solvent and/or approximate implicit solvent models.

3.
J Chem Theory Comput ; 15(3): 1996-2009, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30682250

RESUMO

Continuum models to handle solvent and electrolyte effects in an effective way have a long tradition in quantum-chemistry simulations and are nowadays also being introduced in computational condensed-matter and materials simulations. A key ingredient of continuum models is the choice of the solute cavity, i.e., the definition of the sharp or smooth boundary between the regions of space occupied by the quantum-mechanical (QM) system and the continuum embedding environment. The cavity, which should really reflect the region of space accessible to the degrees of freedom of the environmental components (the solvent), is usually defined by an exclusion approach in terms of the degrees of freedom of the system (the solute), typically, the atomic position of the QM system or its electronic density. Although most of the solute-based approaches developed lead to models with comparable and high accuracy when applied to small organic molecules, they can introduce significant artifacts when complex systems are considered. As an example, condensed-matter simulations often deal with supports that present open structures, i.e., low-density materials that have regions of space in which a continuum environment could penetrate, while a real solvent would not be able to. Similarly, unphysical pockets of continuum solvent may appear in systems featuring multiple molecular components, e.g., when dealing with hybrid QM/continuum approaches to solvation that involve introducing explicit solvent molecules around the solvated system. Here, we introduce a solvent-aware approach to eliminate the unphysical effects where regions of space smaller than the size of a single solvent molecule could still be filled with a continuum environment. We do this by defining a smoothly varying solute cavity that overcomes several of the limitations of straightforward solute-based definitions. This new approach applies to any smooth local definition of the continuum interface, it being based on the electronic density or the atomic positions of the QM system. It produces boundaries that are continuously differentiable with respect to the QM degrees of freedom, leading to accurate forces and/or Kohn-Sham potentials. The additional parameters involved in the solvent-aware interfaces can be set according to geometrical principles or can be converged to improve accuracy in complex multicomponent systems. Benchmarks on semiconductor substrates and on explicit water substrates confirm the flexibility and the accuracy of the approach and provide a general set of parameters for condensed-matter systems featuring open structures and/or explicit liquid components.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...