Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Neuroinflammation ; 20(1): 147, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349821

RESUMO

BACKGROUND: Parkinson's disease (PD) is characterized by a progressive degeneration of dopaminergic neurons, which leads to irreversible loss of peripheral motor functions. Death of dopaminergic neurons induces an inflammatory response in microglial cells, which further exacerbates neuronal loss. Reducing inflammation is expected to ameliorate neuronal loss and arrest motor dysfunctions. Because of the contribution of the NLRP3 inflammasome to the inflammatory response in PD, we targeted NLRP3 using the specific inhibitor OLT1177®. METHODS: We evaluated the effectiveness of OLT1177® in reducing the inflammatory response in an MPTP neurotoxic model of PD. Using a combination of in vitro and in vivo studies, we analyzed the effects of NLRP3 inhibition on pro-inflammatory markers in the brain, α-synuclein aggregation, and dopaminergic neuron survival. We also determined the effects of OLT1177® on locomotor deficits associated with MPTP and brain penetrance. RESULTS: Treatment with OLT1177® prevented the loss of motor function, reduced the levels of α-synuclein, modulated pro-inflammatory markers in the nigrostriatal areas of the brain, and protected dopaminergic neurons from degeneration in the MPTP model of PD. We also demonstrated that OLT1177® crosses the blood-brain barrier and reaches therapeutic concentrations in the brain. CONCLUSIONS: These data suggest that targeting the NLRP3 inflammasome by OLT1177® may be a safe and novel therapeutic approach to arrest neuroinflammation and protect against neurological deficits of Parkinson's disease in humans.


Assuntos
Doença de Parkinson , Humanos , Animais , Camundongos , Doença de Parkinson/tratamento farmacológico , alfa-Sinucleína/farmacologia , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Neurônios Dopaminérgicos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
3.
J Biol Chem ; 296: 100630, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33823154

RESUMO

Unchecked inflammation can result in severe diseases with high mortality, such as macrophage activation syndrome (MAS). MAS and associated cytokine storms have been observed in COVID-19 patients exhibiting systemic hyperinflammation. Interleukin-18 (IL-18), a proinflammatory cytokine belonging to the IL-1 family, is elevated in both MAS and COVID-19 patients, and its level is known to correlate with the severity of COVID-19 symptoms. IL-18 binds its specific receptor IL-1 receptor 5 (IL-1R5, also known as IL-18 receptor alpha chain), leading to the recruitment of the coreceptor, IL-1 receptor 7 (IL-1R7, also known as IL-18 receptor beta chain). This heterotrimeric complex then initiates downstream signaling, resulting in systemic and local inflammation. Here, we developed a novel humanized monoclonal anti-IL-1R7 antibody to specifically block the activity of IL-18 and its inflammatory signaling. We characterized the function of this antibody in human cell lines, in freshly obtained peripheral blood mononuclear cells (PBMCs) and in human whole blood cultures. We found that the anti-IL-1R7 antibody significantly suppressed IL-18-mediated NFκB activation, reduced IL-18-stimulated IFNγ and IL-6 production in human cell lines, and reduced IL-18-induced IFNγ, IL-6, and TNFα production in PBMCs. Moreover, the anti-IL-1R7 antibody significantly inhibited LPS- and Candida albicans-induced IFNγ production in PBMCs, as well as LPS-induced IFNγ production in whole blood cultures. Our data suggest that blocking IL-1R7 could represent a potential therapeutic strategy to specifically modulate IL-18 signaling and may warrant further investigation into its clinical potential for treating IL-18-mediated diseases, including MAS and COVID-19.


Assuntos
Anti-Inflamatórios/farmacologia , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/farmacologia , Fatores Imunológicos/farmacologia , Interleucina-18/genética , Receptores de Interleucina-18/genética , Anti-Inflamatórios/metabolismo , Anticorpos Monoclonais/biossíntese , Anticorpos Neutralizantes/biossíntese , Candida albicans/crescimento & desenvolvimento , Candida albicans/patogenicidade , Regulação da Expressão Gênica , Células HEK293 , Humanos , Fatores Imunológicos/biossíntese , Inflamação , Interferon gama/genética , Interferon gama/imunologia , Interleucina-18/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/microbiologia , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Síndrome de Ativação Macrofágica/tratamento farmacológico , NF-kappa B/genética , NF-kappa B/imunologia , Cultura Primária de Células , Receptores de Interleucina-18/antagonistas & inibidores , Receptores de Interleucina-18/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Tratamento Farmacológico da COVID-19
4.
Basic Clin Pharmacol Toxicol ; 128(2): 204-212, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33176395

RESUMO

The coronavirus responsible for COVID-19, SARS-CoV-2, utilizes a viral membrane spike protein for host cell entry. For the virus to engage in host membrane fusion, SARS-CoV-2 utilizes the human transmembrane surface protease, TMPRSS2, to cleave and activate the spike protein. Camostat mesylate, an orally available well-known serine protease inhibitor, is a potent inhibitor of TMPRSS2 and has been hypothesized as a potential antiviral drug against COVID-19. In vitro human cell and animal studies have shown that camostat mesylate inhibits virus-cell membrane fusion and hence viral replication. In mice, camostat mesylate treatment during acute infection with influenza, also dependent on TMPRSS2, leads to a reduced viral load. The decreased viral load may be associated with an improved patient outcome. Because camostat mesylate is administered as an oral drug, it may be used in outpatients as well as inpatients at all disease stages of SARS-CoV-2 infection if it is shown to be an effective antiviral agent. Clinical trials are currently ongoing to test whether this well-known drug could be repurposed and utilized to combat the current pandemic. In the following, we will review current knowledge on camostat mesylate mode of action, potential benefits as an antiviral agent and ongoing clinical trials.


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Ésteres/uso terapêutico , Guanidinas/uso terapêutico , Inibidores de Serina Proteinase/uso terapêutico , Animais , Antivirais/administração & dosagem , Antivirais/efeitos adversos , Reposicionamento de Medicamentos , Ésteres/administração & dosagem , Ésteres/efeitos adversos , Guanidinas/administração & dosagem , Guanidinas/efeitos adversos , Humanos , Camundongos , Segurança do Paciente , Serina Endopeptidases/efeitos dos fármacos , Inibidores de Serina Proteinase/administração & dosagem , Inibidores de Serina Proteinase/efeitos adversos
5.
Curr Opin HIV AIDS ; 15(5): 309-315, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32675575

RESUMO

PURPOSE OF REVIEW: Antiretroviral therapy (ART) is extremely effective in controlling HIV-1 infection; however, ART is not curative. Here, we review broadly neutralizing anti-HIV-1 antibodies (bNAbs) combined with latency-reversing agents (LRAs) or immune modulators as strategy for achieving long-term HIV-1 remission. RECENT FINDINGS: Clinical trials testing the effect of a single intervention such as a LRA 'shock and kill', immune modulator or bNAbs among HIV-1 infected individuals on long-term suppressive ART have not lead to long-term HIV-1 remission when ART is stopped. Novel combinations of interventions designed to eliminate infected cells and enhance immune-effector functions are being investigated. Findings in nonhuman primates (NHPs) of such combinations are very promising and clinical trials are now ongoing. These trials will provide the first indication of the efficacy of combinations of bNAbs and LRA or immune modulators for achieving durable HIV-1 remission. SUMMARY: bNAbs facilitate the elimination of HIV-1 infected cells and boost immune responses. Preclinical findings show that these effects can be harnessed by simultaneous administration of LRAs or immune modulators such as Toll-like receptor agonists. The clinical success of such combination strategies may be impacted by factors such as immune exhaustion, bNAbs sensitivity as well as the pharmacodynamics of the investigational compounds.


Assuntos
Infecções por HIV , HIV-1 , Animais , Anticorpos Neutralizantes , Anticorpos Amplamente Neutralizantes , Anticorpos Anti-HIV , Infecções por HIV/tratamento farmacológico , Humanos
6.
Front Immunol ; 11: 1112, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32595636

RESUMO

Toll-like receptors (TLRs) are a family of pattern recognition receptors and part of the first line of defense against invading microbes. In humans, we know of 10 different TLRs, which are expressed to varying degrees in immune cell subsets. Engaging TLRs through their specific ligands leads to activation of the innate immune system and secondarily priming of the adaptive immune system. Because of these unique properties, TLR agonists have been investigated as immunotherapy in cancer treatment for many years, but in recent years there has also been growing interest in the use of TLR agonists in the context of human immunodeficiency virus type 1 (HIV-1) cure research. The primary obstacle to curing HIV-1 is the presence of a latent viral reservoir in transcriptionally silent immune cells. Due to the very limited transcription of the integrated HIV-1 proviruses, latently infected cells cannot be targeted and cleared by immune effector mechanisms. TLR agonists are very interesting in this context because of their potential dual effects as latency reverting agents (LRAs) and immune modulatory compounds. Here, we review preclinical and clinical data on the impact of TLR stimulation on HIV-1 latency as well as antiviral and HIV-1-specific immunity. We also focus on the promising role of TLR agonists in combination strategies in HIV-1 cure research. Different combinations of TLR agonists and broadly neutralizing antibodies or TLRs agonists as adjuvants in HIV-1 vaccines have shown very encouraging results in non-human primate experiments and these concepts are now moving into clinical testing.


Assuntos
Infecções por HIV/imunologia , Infecções por HIV/terapia , HIV-1 , Imunoterapia/métodos , Receptores Toll-Like/agonistas , Vacinas contra a AIDS/administração & dosagem , Adjuvantes Imunológicos/administração & dosagem , Animais , Fármacos Anti-HIV/farmacologia , Anticorpos Amplamente Neutralizantes/administração & dosagem , Ensaios Clínicos como Assunto , Anticorpos Anti-HIV/administração & dosagem , HIV-1/efeitos dos fármacos , HIV-1/imunologia , HIV-1/fisiologia , Humanos , Inibidores de Checkpoint Imunológico/administração & dosagem , Fatores Imunológicos/farmacologia , Técnicas In Vitro , Modelos Imunológicos , Primatas , Pteridinas/farmacologia , Receptor 3 Toll-Like/agonistas , Receptor 7 Toll-Like/agonistas , Receptor Toll-Like 9/agonistas , Latência Viral/efeitos dos fármacos , Latência Viral/imunologia
7.
Nat Immunol ; 20(9): 1138-1149, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31427775

RESUMO

Interleukin (IL)-1R3 is the co-receptor in three signaling pathways that involve six cytokines of the IL-1 family (IL-1α, IL-1ß, IL-33, IL-36α, IL-36ß and IL-36γ). In many diseases, multiple cytokines contribute to disease pathogenesis. For example, in asthma, both IL-33 and IL-1 are of major importance, as are IL-36 and IL-1 in psoriasis. We developed a blocking monoclonal antibody (mAb) to human IL-1R3 (MAB-hR3) and demonstrate here that this antibody specifically inhibits signaling via IL-1, IL-33 and IL-36 in vitro. Also, in three distinct in vivo models of disease (crystal-induced peritonitis, allergic airway inflammation and psoriasis), we found that targeting IL-1R3 with a single mAb to mouse IL-1R3 (MAB-mR3) significantly attenuated heterogeneous cytokine-driven inflammation and disease severity. We conclude that in diseases driven by multiple cytokines, a single antagonistic agent such as a mAb to IL-1R3 is a therapeutic option with considerable translational benefit.


Assuntos
Anticorpos Bloqueadores/farmacologia , Anticorpos Monoclonais/farmacologia , Proteína Acessória do Receptor de Interleucina-1/antagonistas & inibidores , Peritonite/imunologia , Pneumonia/imunologia , Psoríase/imunologia , Células A549 , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Células HEK293 , Humanos , Imiquimode/toxicidade , Inflamação/patologia , Interleucina-1/imunologia , Proteína Acessória do Receptor de Interleucina-1/imunologia , Interleucina-1beta/imunologia , Interleucina-33/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina/toxicidade , Peritonite/tratamento farmacológico , Peritonite/patologia , Pneumonia/tratamento farmacológico , Pneumonia/patologia , Psoríase/tratamento farmacológico , Psoríase/patologia , Transdução de Sinais/imunologia , Ácido Úrico/toxicidade
8.
mSphere ; 3(1)2018.
Artigo em Inglês | MEDLINE | ID: mdl-29468194

RESUMO

Histone deacetylase inhibitors (HDACi) modulate the transcriptional activity of all cells, including innate and adaptive immune cells. Therefore, we aimed to evaluate immunological effects of treatment with the HDACi panobinostat in HIV-infected patients during a clinical phase IIa latency reversal trial. Using flow cytometry, we investigated changes in T cell activation (CD69, CD38, HLA-DR) and the expression of CD39 and CTLA4 on regulatory T cells (Tregs). Whole-blood stimulations were performed and cytokine responses measured using Luminex. Gene expression in purified peripheral blood mononuclear cells (PBMCs) was evaluated using an Affymetrix HTA 2.0 gene chip. We found that proportions of CD4+ and CD8+ T cells expressing CD69 increased 24 h after initial panobinostat administration (P < 0.01), followed by an increase in the proportions of CD38+ HLA-DR+-coexpressing CD4+ T cells on day 4 (P = 0.02). Concurrently, proportions of Tregs increased by 40% (P = 0.003). Treg CTLA4 median fluorescent intensity (MFI) increased by 25% (P = 0.007), and CD39 MFI on CD39+ Treg increased by 12% (P = 0.02). Lipopolysaccharide (LPS)-induced inflammatory responses (interleukin-1ß [IL-1ß], IL-6, IL-12p40, and tumor necrosis factor alpha [TNF-α]) in whole blood were significantly downregulated 4 days after initial dosing. Lastly, panobinostat induced significant changes in the overall gene expression pattern (fold change, >1.5; false-discovery-rate [FDR]-corrected P, <0.05). Importantly, measures of immune function returned to baseline after panobinostat treatment and follow-up revealed no sustained effect on overall gene expression. IMPORTANCE The effect of treatment with histone deacetylase inhibitors on the immune system in HIV-infected individuals is not clear. Analysis of results from a clinical trial in which 15 HIV-infected individuals received 12 doses of panobinostat identified a significant impact on both T cell activation status and regulatory T cell suppressive marker expression and a reduced level of monocytic responsiveness to inflammatory stimuli. These changes were substantiated by global gene expression analysis. Collectively, the results suggest that panobinostat has multiple effects on innate and adaptive immune responses. Importantly, all the effects were transient, and further panobinostat treatment did not cause persistent long-term changes in gene expression patterns in HIV-infected individuals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...