Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; 23(16): e202200253, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35713329

RESUMO

Novel strategies against multidrug-resistant bacteria are urgently needed in order to overcome the current silent pandemic. Manipulation of toxin production in pathogenic species serves as a promising approach to attenuate virulence and prevent infections. In many bacteria such as Staphylococcus aureus or Listeria monocyotgenes, serine protease ClpXP is a key contributor to virulence and thus represents a prime target for antimicrobial drug discovery. The limited stability of previous electrophilic warheads has prevented a sustained effect of virulence attenuation in bacterial culture. Here, we systematically tailor the stability and inhibitory potency of phenyl ester ClpXP inhibitors by steric shielding of the ester bond and fine-tuning the phenol leaving group. Out of 17 derivatives, two (MAS-19 and MAS-30) inhibited S. aureus ClpP peptidase and ClpXP protease activities by >60 % at 1 µM. Furthermore, the novel inhibitors did not exhibit pronounced cytotoxicity against human and bacterial cells. Unlike the first generation phenylester AV170, these molecules attenuated S. aureus virulence markedly and displayed increased stability in aqueous buffer compared to the previous benchmark AV170.


Assuntos
Antibacterianos , Endopeptidase Clp , Ésteres , Proteínas Hemolisinas , Staphylococcus aureus , Antibacterianos/farmacologia , Proteínas de Bactérias , Endopeptidase Clp/antagonistas & inibidores , Endopeptidase Clp/metabolismo , Ésteres/química , Ésteres/farmacologia , Proteínas Hemolisinas/metabolismo , Humanos , Staphylococcus aureus/efeitos dos fármacos , Virulência
2.
ACS Cent Sci ; 7(3): 488-498, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33791430

RESUMO

Isonitrile natural products exhibit promising antibacterial activities. However, their mechanism of action (MoA) remains largely unknown. Based on the nanomolar potency of xanthocillin X (Xan) against diverse difficult-to-treat Gram-negative bacteria, including the critical priority pathogen Acinetobacter baumannii, we performed in-depth studies to decipher its MoA. While neither metal binding nor cellular protein targets were detected as relevant for Xan's antibiotic effects, sequencing of resistant strains revealed a conserved mutation in the heme biosynthesis enzyme porphobilinogen synthase (PbgS). This mutation caused impaired enzymatic efficiency indicative of reduced heme production. This discovery led to the validation of an untapped mechanism, by which direct heme sequestration of Xan prevents its binding into cognate enzyme pockets resulting in uncontrolled cofactor biosynthesis, accumulation of porphyrins, and corresponding stress with deleterious effects for bacterial viability. Thus, Xan represents a promising antibiotic displaying activity even against multidrug resistant strains, while exhibiting low toxicity to human cells.

3.
ACS Chem Biol ; 15(12): 3227-3234, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33269909

RESUMO

Pyridoxal kinases (PLK) are crucial enzymes for the biosynthesis of pyridoxal phosphate, an important cofactor in a plethora of enzymatic reactions. The evolution of these enzymes resulted in different catalytic designs. In addition to the active site, the importance of a cysteine, embedded within a distant flexible lid region, was recently demonstrated. This cysteine forms a hemithioacetal with the pyridoxal aldehyde and is essential for catalysis. Despite the prevalence of these enzymes in various organisms, no tools were yet available to study the relevance of this lid residue. Here, we introduce pyridoxal probes, each equipped with an electrophilic trapping group in place of the aldehyde to target PLK reactive lid cysteines as a mimic of hemithioacetal formation. The addition of alkyne handles placed at two different positions within the pyridoxal structure facilitates enrichment of PLKs from living cells. Interestingly, depending on the position, the probes displayed a preference for either Gram-positive or Gram-negative PLK enrichment. By applying the cofactor traps, we were able to validate not only previously investigated Staphylococcus aureus and Enterococcus faecalis PLKs but also Escherichia coli and Pseudomonas aeruginosa PLKs, unravelling a crucial role of the lid cysteine for catalysis. Overall, our tailored probes facilitated a reliable readout of lid cysteine containing PLKs, qualifying them as chemical tools for mining further diverse proteomes for this important enzyme class.


Assuntos
Acetais/química , Piridoxal Quinase/metabolismo , Catálise , Cisteína/metabolismo , Bactérias Gram-Negativas/enzimologia , Bactérias Gram-Positivas/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...