Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Nanotechnol ; 19(2): 196-201, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38049597

RESUMO

Interlayer excitons in van der Waals heterostructures are fascinating for applications like exciton condensation, excitonic devices and moiré-induced quantum emitters. The study of these charge-transfer states has almost exclusively focused on band edges, limiting the spectral region to the near-infrared regime. Here we explore the above-gap analogues of interlayer excitons in bilayer WSe2 and identify both neutral and charged species emitting in the ultraviolet. Even though the transitions occur far above the band edge, the states remain metastable, exhibiting linewidths as narrow as 1.8 meV. These interlayer high-lying excitations have switchable dipole orientations and hence show prominent Stark splitting. The positive and negative interlayer high-lying trions exhibit significant binding energies of 20-30 meV, allowing for a broad tunability of transitions via electric fields and electrostatic doping. The Stark splitting of these trions serves as a highly accurate, built-in sensor for measuring interlayer electric field strengths, which are exceedingly difficult to quantify otherwise. Such excitonic complexes are further sensitive to the interlayer twist angle and offer opportunities to explore emergent moiré physics under electrical control. Our findings more than double the accessible energy range for applications based on interlayer excitons.

2.
Phys Rev Lett ; 130(2): 026901, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36706404

RESUMO

Optoelectronic properties of van der Waals homostructures can be selectively engineered by the relative twist angle between layers. Here, we study the twist-dependent moiré coupling in MoSe_{2} homobilayers. For small angles, we find a pronounced redshift of the K-K and Γ-K excitons accompanied by a transition from K-K to Γ-K emission. Both effects can be traced back to the underlying moiré pattern in the MoSe_{2} homobilayers, as confirmed by our low-energy continuum model for different moiré excitons. We identify two distinct intralayer moiré excitons for R stacking, while H stacking yields two degenerate intralayer excitons due to inversion symmetry. In both cases, bright interlayer excitons are found at higher energies. The performed calculations are in excellent agreement with experiment and allow us to characterize the observed exciton resonances, providing insight about the layer composition and relevant stacking configuration of different moiré exciton species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...