Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Photochem Photobiol B ; 31(3): 145-58, 1995 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-8583282

RESUMO

Lipophilic dye cations specifically bind to the mitochondria of living cells. Using fluorescent dyes, the mitochondria can easily be observed with a fluorescence microscope. Electron microscopy has shown that the dyes are bound to the inner mitochondrial membranes and the cristae. Using time-resolved fluorescence microscopy we have investigated, whether the dye molecules are preferentially accumulated at the strongly hydrophobic protein complexes of energy metabolism or at the lipids of the inner membrane system. In order to use our nanosecond-pulsed laser fluorometer we synthesized specially designed lipophilic pyrene cations with S1 lifetimes in the nanosecond domain, which specifically stain mitochondria in living HeLa cells. Model experiments with artificial membranes such as liposomes, proteoliposomes and also protein complexes have shown that the fluorescence is strongly quenched by oxygen if the pyrene probes are bound to lipids. Binding to proteins causes a much smaller quenching effect. In artificial systems, all decays were single exponential. This is in contrast with incubated HeLa cells, which showed double-exponential fluorescence decays. Comparing these with the artificial systems we came to the conclusion that in HeLa cells the long-lived species 1 are pyrene probes preferentially bound to the proteins of the inner mitochondrial membranes. The short-lived species 2 is caused by fluorescence resonance energy transfer from the pyrene probes as donors to cytochromes of the inner membranes as acceptors. From our decay data we estimated a mean distance between donor and acceptor of about 40 A. This is the same order of magnitude as the mean diameters of several mitochondrial protein complexes. Therefore we assumed that species 2 are pyrene probes bound either to mitochondrial proteins with cytochromes as constituents or to the interface between these proteins and the phospholipids of the membranes. Thus both species 1 and species 2 are spatially related to mitochrondrial proteins. This agrees with the observation that respiration of HeLa cells as well as cytochrome c oxidase vesicles (COVs) are inhibited with increasing concentration of pyrene probes. Finally, we studied the photodynamic effect on irradiation of HeLa cells and of COVs after incubation with lipophilic pyrene and porphyrine cations.


Assuntos
Corantes Fluorescentes/metabolismo , Mitocôndrias/metabolismo , Sítios de Ligação , Citofotometria , Corantes Fluorescentes/química , Células HeLa , Humanos , Lipossomos/metabolismo , Estrutura Molecular , Proteolipídeos/metabolismo , Pirenos , Fatores de Tempo
2.
Histochemistry ; 91(3): 257-262, 1989.
Artigo em Alemão | MEDLINE | ID: mdl-2722568

RESUMO

Nuclei of Giemsa stained cells show a purple coloration, which is generated by a complex of DNA, azure B (AB) and eosin Y (EY). The structure of this complex is unknown. Its absorption spectrum shows a sharp and strong band at 18,100 cm-1 (552 nm), the so called Romanowsky band (RB). It is possible to produce the complex outside of the cell, but it is cubersome to handle. Easier to handle is a purple complex composed of chondroitin sulfate (CHS), AB and EY, which also shows a sharp and strong RB at 18,100 cm-1 in the absorption spectrum. This CHS-AB-EY complex is a model for the DNA-AB-EY complex of Giemsa stained cell nuclei. We tried to investigate its structure. In the first step of the staining procedure CHS binds AB cations forming a stable CHS-AB complex. In the case of saturation each anionic SO4- and COO- -binding site of CHS is occupied by one dye cation and the complex has 1:1 composition. It has a strong and broad absorption band with its maximum at ca. 18,000 cm-1 (556 nm). In the second step the CHS-AB complex additionally binds EY dianions forming the purple CHS-AB-EY complex with its RB at 18,100 cm-1. This band can be clearly distinguished from the broad absorption of the bound AB cations. RB is generated by the EY chromophore, whose absorption is shifted to longer wavelength by the interaction with the CHS-AB framework.


Assuntos
Corantes Azur , Fenotiazinas , Análise Espectral
3.
Histochemistry ; 86(1): 71-82, 1986.
Artigo em Alemão | MEDLINE | ID: mdl-2432039

RESUMO

The binding of azur B to chondroitin sulfate (CHS) was investigated using absorption spectroscopy. In aqueous solutions it is possible to distinguish three different dye species with absorption bands at 646, 597, and 555 nm. They are assigned to monomers, dimers, and higher aggregates of azure B, which become bound to CHS as the dye concentration (CD) increases. The short-wavelength band (555 nm) causes metachromasia in stained histological materials. When saturation occurs, the metachromatic azure B-CHS complex has a 1:1 composition, i.e., each anionic SO-4 and COO(-)-binding site of CHS binds one dye cation. The composition of the saturated metachromatic complex was determined by spectrophotometric and conductometric titration of CHS with azure B, while the SO-4 and COO- content of CHS was determined by conductometric titration of CHS-acid with NaOH. The binding isotherm of azure B to CHS was determined using gelpermeation chromatography. The isotherm can be described by the model of cooperative binding of ligands to linear biopolymers. We found good agreement between theoretical predictions and experimental findings in the range of 0 less than r less than 0.8 (r = the fraction of occupied binding sites). Using a Schwarz plot, we determined the binding constants of nucleation (Kn = 2.5 X 10(3) M-1) and aggregation (Kq = 1.2 X 10(5) M-1), as well as the cooperativity parameter (q = 50), T = 295 K. With increasing CD, the strong cooperativity of the dye binding favors the formation of metachromatic aggregates rather than monomers and dimers. From the temperature dependence of Kq we evaluated the standard binding enthalpy (delta Hoq = -20.0 kJ mol-1) and entropy (delta Soq = 29.7 JK-1 mol-1) of the cooperative dye binding. The binding was found to be strongly exothermic and accompanied by a thermodynamically favorable entropy increase, this being typical of hydrophobic interactions. Solid azure B-CHS complexes were prepared according to a special dialytic technique and were studied using a microspectrophotometer equipped with a polarizer and an analyzer. The metachromatic 1:1 complex has a broad, intense absorption band whose main peak occurs at 560 nm. This corresponds with the maximum of the metachromatic dye complex in aqueous solution, i.e. 555 nm. The CHS chains of the azure B-CHS complex can be mechanically aligned in a preferred direction (k). We were able to prepare excellently orientated and very fine dye-CHS films which were birefringent and dichroic - the more birefringent, the better the mechanical orientation.(ABSTRACT TRUNCATED AT 400 WORDS)


Assuntos
Corantes Azur , Sulfatos de Condroitina/análise , Condroitina/análogos & derivados , Fenotiazinas , Coloração e Rotulagem , Animais , Birrefringência , Bovinos , Fenômenos Químicos , Físico-Química , Córnea/metabolismo , Matemática , Espectrofotometria , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...