Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
ACS Cent Sci ; 9(3): 362-372, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36968528

RESUMO

Chemical modifications to DNA bases, including DNA adducts arising from reactions with electrophilic chemicals, are well-known to impact cell growth, miscode during replication, and influence disease etiology. However, knowledge of how genomic sequences and structures influence the accumulation of alkylated DNA bases is not broadly characterized with high resolution, nor have these patterns been linked with overall quantities of modified bases in the genome. For benzo(a) pyrene (BaP), a ubiquitous environmental carcinogen, we developed a single-nucleotide resolution damage sequencing method to map in a human lung cell line the main mutagenic adduct arising from BaP. Furthermore, we combined this analysis with quantitative mass spectrometry to evaluate the dose-response profile of adduct formation. By comparing damage abundance with DNase hypersensitive sites, transcription levels, and other genome annotation data, we found that although overall adduct levels rose with increasing chemical exposure concentration, genomic distribution patterns consistently correlated with chromatin state and transcriptional status. Moreover, due to the single nucleotide resolution characteristics of this DNA damage map, we could determine preferred DNA triad sequence contexts for alkylation accumulation, revealing a characteristic DNA damage signature. This new BaP damage signature had a profile highly similar to mutational signatures identified previously in lung cancer genomes from smokers. Thus, these data provide insight on how genomic features shape the accumulation of alkylation products in the genome and predictive strategies for linking single-nucleotide resolution in vitro damage maps with human cancer mutations.

4.
Front Microbiol ; 14: 1104707, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36896425

RESUMO

Introduction: Microbial isolates from culture can be identified using 16S or whole-genome sequencing which generates substantial costs and requires time and expertise. Protein fingerprinting via Matrix-assisted Laser Desorption Ionization-time of flight mass spectrometry (MALDI-TOF MS) is widely used for rapid bacterial identification in routine diagnostics but shows a poor performance and resolution on commensal bacteria due to currently limited database entries. The aim of this study was to develop a MALDI-TOF MS plugin database (CLOSTRI-TOF) allowing for rapid identification of non-pathogenic human commensal gastrointestinal bacteria. Methods: We constructed a database containing mass spectral profiles (MSP) from 142 bacterial strains representing 47 species and 21 genera within the class Clostridia. Each strain-specific MSP was constructed using >20 raw spectra measured on a microflex Biotyper system (Bruker-Daltonics) from two independent cultures. Results: For validation, we used 58 sequence-confirmed strains and the CLOSTRI-TOF database successfully identified 98 and 93% of the strains, respectively, in two independent laboratories. Next, we applied the database to 326 isolates from stool of healthy Swiss volunteers and identified 264 (82%) of all isolates (compared to 170 (52.1%) with the Bruker-Daltonics library alone), thus classifying 60% of the formerly unknown isolates. Discussion: We describe a new open-source MSP database for fast and accurate identification of the Clostridia class from the human gut microbiota. CLOSTRI-TOF expands the number of species which can be rapidly identified by MALDI-TOF MS.

5.
Chem Res Toxicol ; 36(4): 714-723, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36976926

RESUMO

Tobacco smoke delivers a complex mixture of hazardous and potentially hazardous chemicals. Some of these may induce the formation of DNA mutations, which increases the risk of various cancers that display characteristic patterns of accumulated mutations arising from the causative exposures. Tracking the contributions of individual mutagens to mutational signatures present in human cancers can help understand cancer etiology and advance disease prevention strategies. To characterize the potential contributions of individual constituents of tobacco smoke to tobacco exposure-associated mutational signatures, we first assessed the toxic potential of 13 tobacco-relevant compounds by determining their impact on the viability of a human bronchial lung epithelial cell line (BEAS-2B). Experimentally derived high-resolution mutational profiles were characterized for the seven most potent compounds by sequencing the genomes of clonally expanded mutants that arose after exposure to the individual chemicals. Analogous to the classification of mutagenic processes on the basis of signatures from human cancers, we extracted mutational signatures from the mutant clones. We confirmed the formation of previously characterized benzo[a]pyrene mutational signatures. Furthermore, we discovered three novel mutational signatures. The mutational signatures arising from benzo[a]pyrene and norharmane were similar to human lung cancer signatures attributed to tobacco smoking. However, the signatures arising from N-methyl-N'-nitro-N-nitrosoguanidine and 4-(acetoxymethyl)nitrosamino]-1-(3-pyridyl)-1-butanone were not directly related to known tobacco-linked mutational signatures from human cancers. This new data set expands the scope of the in vitro mutational signature catalog and advances understanding of how environmental agents mutate DNA.


Assuntos
Fumar Cigarros , Neoplasias Pulmonares , Poluição por Fumaça de Tabaco , Humanos , Benzo(a)pireno , Mutação , Neoplasias Pulmonares/genética , DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...