Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Toxicol ; 95(7): 2571-2587, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34095968

RESUMO

Since the addition of fluoride to drinking water in the 1940s, there have been frequent and sometimes heated discussions regarding its benefits and risks. In a recently published review, we addressed the question if current exposure levels in Europe represent a risk to human health. This review was discussed in an editorial asking why we did not calculate benchmark doses (BMD) of fluoride neurotoxicity for humans. Here, we address the question, why it is problematic to calculate BMDs based on the currently available data. Briefly, the conclusions of the available studies are not homogeneous, reporting negative as well as positive results; moreover, the positive studies lack control of confounding factors such as the influence of well-known neurotoxicants. We also discuss the limitations of several further epidemiological studies that did not meet the inclusion criteria of our review. Finally, it is important to not only focus on epidemiological studies. Rather, risk analysis should consider all available data, including epidemiological, animal, as well as in vitro studies. Despite remaining uncertainties, the totality of evidence does not support the notion that fluoride should be considered a human developmental neurotoxicant at current exposure levels in European countries.


Assuntos
Água Potável , Fluoretos , Animais , Estudos Epidemiológicos , Europa (Continente) , Fluoretos/toxicidade , Estudos Longitudinais
2.
Food Chem Toxicol ; 146: 111784, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32998026

RESUMO

It was generally accepted as a default assumption that No-Observed-Adverse-Effect Levels (NOAELs) or Lowest-Observed-Adverse-Effect Levels (LOAELs) in long-term toxicity studies are lower than in short-term ones, i.e. the toxic potency increases with prolonged exposure duration. Recent studies on pesticides and industrial chemicals reported that subacute, subchronic or chronic NOAELs/LOAELs are similar when study design factors are appropriately considered. We investigated whether these findings also apply to certain food constituents. After reviewing subchronic and chronic toxicity studies on more than 100 compounds, a total of 32 compounds could be included in the analysis. Geometric mean (GM) values of subchronic vs. chronic NOAEL or LOAEL ratios ranged from 1.0 to 2.0, with a geometric standard deviation from 2.2 to 4.2, which is consistent with data reported in the literature. While for many of the investigated compounds the ratio is around 1 - suggesting that health-based guidance values could appropriately be derived from subchronic toxicity studies - our study also identified some substances with higher ratios leading to a GM of around 2. The EFSA Scientific Committee suggested to apply an uncertainty factor of 2 to extrapolate from subchronic to chronic studies and, as a precautionary approach, we concur with this suggestion.


Assuntos
Aditivos Alimentares/toxicidade , Contaminação de Alimentos , Animais , Humanos , Camundongos , Nível de Efeito Adverso não Observado , Testes de Toxicidade Crônica , Testes de Toxicidade Subcrônica
3.
Arch Toxicol ; 94(5): 1375-1415, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32382957

RESUMO

Recently, epidemiological studies have suggested that fluoride is a human developmental neurotoxicant that reduces measures of intelligence in children, placing it into the same category as toxic metals (lead, methylmercury, arsenic) and polychlorinated biphenyls. If true, this assessment would be highly relevant considering the widespread fluoridation of drinking water and the worldwide use of fluoride in oral hygiene products such as toothpaste. To gain a deeper understanding of these assertions, we reviewed the levels of human exposure, as well as results from animal experiments, particularly focusing on developmental toxicity, and the molecular mechanisms by which fluoride can cause adverse effects. Moreover, in vitro studies investigating fluoride in neuronal cells and precursor/stem cells were analyzed, and 23 epidemiological studies published since 2012 were considered. The results show that the margin of exposure (MoE) between no observed adverse effect levels (NOAELs) in animal studies and the current adequate intake (AI) of fluoride (50 µg/kg b.w./day) in humans ranges between 50 and 210, depending on the specific animal experiment used as reference. Even for unusually high fluoride exposure levels, an MoE of at least ten was obtained. Furthermore, concentrations of fluoride in human plasma are much lower than fluoride concentrations, causing effects in cell cultures. In contrast, 21 of 23 recent epidemiological studies report an association between high fluoride exposure and reduced intelligence. The discrepancy between experimental and epidemiological evidence may be reconciled with deficiencies inherent in most of these epidemiological studies on a putative association between fluoride and intelligence, especially with respect to adequate consideration of potential confounding factors, e.g., socioeconomic status, residence, breast feeding, low birth weight, maternal intelligence, and exposure to other neurotoxic chemicals. In conclusion, based on the totality of currently available scientific evidence, the present review does not support the presumption that fluoride should be assessed as a human developmental neurotoxicant at the current exposure levels in Europe.


Assuntos
Exposição Ambiental/estatística & dados numéricos , Fluoretos/toxicidade , Síndromes Neurotóxicas/epidemiologia , Experimentação Animal , Animais , Arsênio , Criança , Água Potável , Estudos Epidemiológicos , Europa (Continente) , Feminino , Humanos , Compostos de Metilmercúrio , Nível de Efeito Adverso não Observado
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...