Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuropsychologia ; 196: 108843, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38423173

RESUMO

Neurodevelopmental disabilities affect up to 50% of survivors of congenital heart disease (CHD). Language difficulties are frequently identified during preschool period and can lead to academic, social, behavioral, and emotional difficulties. Structural brain alterations are associated with poorer neurodevelopmental outcomes in patients with CHD during infancy, childhood, and adolescence. However, evidence is lacking about the functional brain activity in children with CHD and its relationship with neurodevelopment. This study therefore aimed to characterize brain responses during a passive story-listening task in 3-year-old children with CHD, and to investigate the relationship between functional brain patterns of language processing and neurodevelopmental outcomes. To do so, we assessed hemodynamic concentration changes, using functional near-infrared spectroscopy (fNIRS), and neurodevelopmental outcomes, using the Wechsler Preschool and Primary Scale of Intelligence - 4th Edition (WPPSI-IV), in children with CHD (n = 19) and healthy controls (n = 23). Compared to their healthy peers, children with CHD had significantly lower scores on the Verbal comprehension index (VCI), the Vocabulary acquisition index (VAI), the General ability index (GAI), and the Information and the Picture Naming subtests of the WPPSI-IV. During the passive story-listening task, healthy controls showed significant hemodynamic brain responses in the temporal and the temporal posterior regions, with stronger activation in the temporal posterior than in the temporal regions. In contrast, children with CHD showed reduced activation in the temporal posterior regions compared to controls, with no difference of activation between regions. Reduced brain responses in the temporal posterior regions were also correlated with lower neurodevelopmental outcomes in both groups. This is the first study that reveals reduced brain functional responses in preschoolers with CHD during a receptive language task. It also suggests that the temporal posterior activation could be a potential brain marker of cognitive development. These findings provide support for the feasibility of identifying brain correlates of neurodevelopmental vulnerabilities in children with CHD.


Assuntos
Cardiopatias Congênitas , Pré-Escolar , Adolescente , Humanos , Criança , Cardiopatias Congênitas/complicações , Cardiopatias Congênitas/diagnóstico por imagem , Cardiopatias Congênitas/psicologia , Encéfalo/diagnóstico por imagem , Emoções , Cognição , Vocabulário
2.
Front Hum Neurosci ; 17: 1253529, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37964801

RESUMO

Introduction: Pediatric frontal and temporal lobe epilepsies (FLE, TLE) have been associated with language impairments and structural and functional brain alterations. However, there is no clear consensus regarding the specific patterns of cerebral reorganization of language networks in these patients. The current study aims at characterizing the cerebral language networks in children with FLE or TLE, and the association between brain network characteristics and cognitive abilities. Methods: Twenty (20) children with FLE or TLE aged between 6 and 18 years and 29 age- and sex-matched healthy controls underwent a neuropsychological evaluation and a simultaneous functional near-infrared spectroscopy and electroencephalography (fNIRS-EEG) recording at rest and during a receptive language task. EEG was used to identify potential subclinical seizures in patients. We removed these time intervals from the fNIRS signal to investigate language brain networks and not epileptogenic networks. Functional connectivity matrices on fNIRS oxy-hemoglobin concentration changes were computed using cross-correlations between all channels. Results and discussion: Group comparisons of residual matrices (=individual task-based matrix minus individual resting-state matrix) revealed significantly reduced connectivity within the left and between hemispheres, increased connectivity within the right hemisphere and higher right hemispheric local efficiency for the epilepsy group compared to the control group. The epilepsy group had significantly lower cognitive performance in all domains compared to their healthy peers. Epilepsy patients' local network efficiency in the left hemisphere was negatively associated with the estimated IQ (p = 0.014), suggesting that brain reorganization in response to FLE and TLE does not allow for an optimal cognitive development.

3.
Child Neuropsychol ; 29(7): 1088-1108, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36718095

RESUMO

Patients with congenital heart disease (CHD) requiring cardiac surgery in infancy are at high risk for neurodevelopmental impairments. Neonatal imaging studies have reported disruptions of brain functional organization before surgery. Yet, the extent to which functional network alterations are present after cardiac repair remains unexplored. This preliminary study aimed at investigating cortical functional connectivity in 4-month-old infants with repaired CHD, using resting-state functional near-infrared spectroscopy (fNIRS). After fNIRS signal frequency decomposition, we compared values of magnitude-squared coherence as a measure of connectivity strength, between 21 infants with corrected CHD and 31 healthy controls. We identified a subset of connections with differences between groups at an uncorrected statistical level of p < .05 while controlling for sex and maternal socioeconomic status, with most of these connections showing reduced connectivity in infants with CHD. Although none of these differences reach statistical significance after FDR correction, likely due to the small sample size, moderate to large effect sizes were found for group-differences. If replicated, these results would therefore suggest preliminary evidence that alterations of brain functional connectivity are present in the months after cardiac surgery. Additional studies involving larger sample size are needed to replicate our data, and comparisons between pre- and postoperative findings would allow to further delineate alterations of functional brain connectivity in this population.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Cardiopatias Congênitas , Recém-Nascido , Lactente , Humanos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia , Mapeamento Encefálico/métodos , Cardiopatias Congênitas/diagnóstico por imagem , Cardiopatias Congênitas/cirurgia
4.
Neurophotonics ; 9(4): 045004, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36405999

RESUMO

Significance: Current techniques for data analysis in functional near-infrared spectroscopy (fNIRS), such as artifact correction, do not allow to integrate the information originating from both wavelengths, considering only temporal and spatial dimensions of the signal's structure. Parallel factor analysis (PARAFAC) has previously been validated as a multidimensional decomposition technique in other neuroimaging fields. Aim: We aimed to introduce and validate the use of PARAFAC for the analysis of fNIRS data, which is inherently multidimensional (time, space, and wavelength). Approach: We used data acquired in 17 healthy adults during a verbal fluency task to compare the efficacy of PARAFAC for motion artifact correction to traditional two-dimensional decomposition techniques, i.e., target principal (tPCA) and independent component analysis (ICA). Correction performance was further evaluated under controlled conditions with simulated artifacts and hemodynamic response functions. Results: PARAFAC achieved significantly higher improvement in data quality as compared to tPCA and ICA. Correction in several simulated signals further validated its use and promoted it as a robust method independent of the artifact's characteristics. Conclusions: This study describes the first implementation of PARAFAC in fNIRS and provides validation for its use to correct artifacts. PARAFAC is a promising data-driven alternative for multidimensional data analyses in fNIRS and this study paves the way for further applications.

5.
J Neurosci Methods ; 370: 109487, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35090901

RESUMO

BACKGROUND: Functional near-infrared spectroscopy (fNIRS) is a suitable tool for recording brain function in pediatric or challenging populations. As with other neuroimaging techniques, the scientific community is engaged in an evolving debate regarding the most adequate methods for performing fNIRS data analyses. NEW METHOD: We introduce LIONirs, a neuroinformatics toolbox for fNIRS data analysis, designed to follow two main goals: (1) flexibility, to explore several methods in parallel and verify results using 3D visualization; (2) simplicity, to apply a defined processing pipeline to a large dataset of subjects by using the MATLAB Batch System and available on GitHub. RESULTS: Within the graphical user interfaces (DisplayGUI), the user can reject noisy intervals and correct artifacts, while visualizing the topographical projection of the data onto the 3D head representation. Data decomposition methods are available for the identification of relevant signatures, such as brain responses or artifacts. Multimodal data recorded simultaneously to fNIRS, such as physiology, electroencephalography or audio-video, can be visualized using the DisplayGUI. The toolbox includes several functions that allow one to read, preprocess, and analyze fNIRS data, including task-based and functional connectivity measures. COMPARISON WITH EXISTING METHODS: Several good neuroinformatics tools for fNIRS data analysis are currently available. None of them emphasize multimodal visualization of the data throughout the preprocessing steps and multidimensional decomposition, which are essential for understanding challenging data. Furthermore, LIONirs provides compatibility and complementarity with other existing tools by supporting common data format. CONCLUSIONS: LIONirs offers a flexible platform for basic and advanced fNIRS data analysis, shown through real experimental examples.


Assuntos
Análise de Dados , Espectroscopia de Luz Próxima ao Infravermelho , Artefatos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Criança , Eletroencefalografia , Humanos , Espectroscopia de Luz Próxima ao Infravermelho/métodos
6.
Handb Clin Neurol ; 174: 239-249, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32977881

RESUMO

The purpose of a pediatric neuropsychologic assessment is to evaluate cognitive, behavioral, sensory-motor, perceptual, and socioaffective functioning. A standardized, validated set of tools, questionnaires, and qualitative methods is applied to this end. The neuropsychologist integrates the results of the formal assessment, the case history, and third-party observations to interpret the individual findings across disciplines and draw conclusions about brain-behavior relationships. Various indications for neuropsychologic assessment include the identification of neurodevelopmental difficulties and the characterization of the impact of medical conditions or a pharmaceutical treatment. Prior to the evaluation, as much information as possible must be gathered about the child for efficient and accurate planning. In the context of pediatric neuropsychologic assessments, special challenges requiring more flexibility as regards the duration of the assessment, the use of different age-specific tools, or particular sensitivity when interacting with the child may arise. Neuropsychologic assessment is a cornerstone in the process of diagnosing neurodevelopmental disabilities in children and is frequently a component of a multidisciplinary evaluation. From it can be derived recommendations for the different contexts of a child's life (e.g., family, care team, school).


Assuntos
Encéfalo , Família , Criança , Humanos , Testes Neuropsicológicos
7.
Front Hum Neurosci ; 14: 62, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32226367

RESUMO

The development of language functions is of great interest to neuroscientists, as these functions are among the fundamental capacities of human cognition. For many years, researchers aimed at identifying cerebral correlates of language abilities. More recently, the development of new data analysis tools has generated a shift toward the investigation of complex cerebral networks. In 2015, Weiss-Croft and Baldeweg published a very interesting systematic review on the development of functional language networks, explored through the use of functional magnetic resonance imaging (fMRI). Compared to fMRI and because of their excellent temporal resolution, magnetoencephalography (MEG) and electroencephalography (EEG) provide different and important information on brain activity. Both therefore constitute crucial neuroimaging techniques for the investigation of the maturation of functional language brain networks. The main objective of this systematic review is to provide a state of knowledge on the investigation of language-related cerebral networks in children, through the use of EEG and MEG, as well as a detailed portrait of relevant MEG and EEG data analysis methods used in that specific research context. To do so, we have summarized the results and systematically compared the methodological approach of 24 peer-reviewed EEG or MEG scientific studies that included healthy children and children with or at high risk of language disabilities, from birth up to 18 years of age. All included studies employed functional and effective connectivity measures, such as coherence, phase locking value, and Phase Slope Index, and did so using different experimental paradigms (e.g., at rest or during language-related tasks). This review will provide more insight into the use of EEG and MEG for the study of language networks in children, contribute to the current state of knowledge on the developmental path of functional connectivity in language networks during childhood and adolescence, and finally allow future studies to choose the most appropriate type of connectivity analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...