Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202407425, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963262

RESUMO

Bioactive dimeric (pre-)anthraquinones are ubiquitous in nature. Their biosynthesis via an oxidative phenol coupling (OPC) step is catalyzed by either cytochrome P450 enzymes, peroxidases, or laccases. While the biocatalysis of OPC in molds (Ascomycota) is well-known, the respective enzymes of mushroom-forming fungi (Basidiomycota) are still unknown. Here, we report on the biosynthesis of the atropisomers phlegmacin A1 and B1, unsymmetrical 7,10'-homo-coupled dihydroanthracenones of the mushroom Cortinarius odorifer. The biosynthesis was heterologously reconstituted in the mold Aspergillus niger. We show that methylation of the dimeric (pre-)anthraquinone building block atrochrysone to its 6-O-methyl ether torosachrysone by the O-methyltransferase (CoOMT1) precedes the regioselective homo-coupling to phlegmacin, catalyzed by an unspecific peroxygenase (CoUPO1). Our results revealed an unprecedented UPO-mediated unsymmetric OPC reaction, thereby expanding the biocatalytic portfolio of OPC-type reactions beyond the commonly reported enzymes. The findings highlight the pivotal role of OPC in natural processes, demonstrating that Basidiomycota employed peroxygenases to develop the ability to selectively couple aryls, distinct and convergent to any other group of organisms.

2.
Drug Metab Dispos ; 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38408868

RESUMO

Fluorination of organic compounds plays an important role in the chemical and pharmaceutical industry and is often applied in order to improve physicochemical parameters or modify pharmacological properties. While oxidative and reductive defluorination have been shown to be responsible for the metabolic degradation of organofluorine compounds, the involvement of hydrolytic mechanisms catalyzed by human enzymes has not been reported so far. Here, we investigated the enzymatic defluorination of terminally monofluorinated aliphates with [1-(5-fluoropentyl)-1H-indol-3-yl]-1-naphthalenyl-methanone (AM-2201) as a model substance. We performed in vitro biotransformation using pooled human liver microsomes (pHLM) and human recombinant cytochrome P450 (CYP) assays. In order to elucidate the underlying mechanisms, modified incubation conditions were applied including the use of deuterium labeled AM-2201 (d2 -AM-2201). Identification of the main metabolites and analysis of their isotopic composition was performed by liquid-chromatography coupled to time-of-flight-mass-spectrometry (LC-QToF-MS). Quantification of the metabolites was achieved with a validated method based on liquid-chromatography-tandem-mass-spectrometry (LC-MS/MS). CYP 1A2 mediated defluorination of d2 -AM-2201 revealed an isotopic pattern of the defluorinated 5-hydroxypentyl metabolite (5-HPM) indicating a redox mechanism with an aldehyde as a plausible intermediate. In contrast, formation of 5-HPM by pHLM was observed independently of the presence of atmospheric oxygen or co-factors regenerating the redox system. pHLM incubation of d2 -AM-2201 confirmed the hypothesis of a non-oxidative mechanism involved in the defluorination of the 5-fluoropentyl moiety. So far, enzymatically catalyzed, hydrolytic defluorination was only described in bacteria and other prokaryotes. The presented data prove the involvement of a hydrolytic mechanism catalyzed by human microsomal enzymes other than CYP. Significance Statement Elucidating the mechanisms involved in the enzymatic detoxification of organofluorine compounds is crucial for enhancing our understanding and facilitating the design and development of drugs with improved pharmacokinetic profiles. The carbon-fluorine bond possesses a high binding energy, which suggests that non-activated fluoroalkanes would not undergo hydrolytic cleavage. However, our study provides evidence for the involvement of a non-oxidative mechanism catalyzed by human liver enzymes. It is important to consider CYP-independent, hydrolytic defluorination, when investigating the pharmacokinetic properties of fluorinated xenobiotics.

3.
Chembiochem ; 24(3): e202200649, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36507600

RESUMO

The nonreducing iterative type I polyketide synthases (NR-PKSs) CoPKS1 and CoPKS4 of the webcap mushroom Cortinarius odorifer share 88 % identical amino acids. CoPKS1 almost exclusively produces a tricyclic octaketide product, atrochrysone carboxylic acid, whereas CoPKS4 shows simultaneous hepta- and octaketide synthase activity and also produces the bicyclic heptaketide 6-hydroxymusizin. To identify the region(s) controlling chain length, four chimeric enzyme variants were constructed and assayed for activity in Aspergillus niger as heterologous expression platform. We provide evidence that the ß-ketoacyl synthase (KS) domain determines chain length in these mushroom NR-PKSs, even though their KS domains differ in only ten amino acids. A unique proline-rich linker connecting the acyl carrier protein with the thioesterase domain varies most between these two enzymes but is not involved in chain length control.


Assuntos
Agaricales , Policetídeo Sintases , Policetídeo Sintases/metabolismo , Agaricales/metabolismo , Aminoácidos
4.
Angew Chem Int Ed Engl ; 61(22): e202201731, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35294098

RESUMO

Magic Spot Nucleotides (MSN) regulate the stringent response, a highly conserved bacterial stress adaptation mechanism, enabling survival under adverse external challenges. In times of antibiotic crisis, a detailed understanding of stringent response is essential, as potentially new targets for pharmacological intervention could be identified. In this study, we delineate the MSN interactome in Escherichia coli and Salmonella typhimurium applying a family of trifunctional photoaffinity capture compounds. We introduce MSN probes covering a diverse phosphorylation pattern, such as pppGpp, ppGpp, and pGpp. Our chemical proteomics approach provides datasets of putative MSN receptors both from cytosolic and membrane fractions that unveil new MSN targets. We find that the activity of the non-Nudix hydrolase ApaH is potently inhibited by pppGpp, which itself is converted to pGpp by ApaH. The capture compounds described herein will be useful to identify MSN interactomes across bacterial species.


Assuntos
Regulação Bacteriana da Expressão Gênica , Guanosina Pentafosfato , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Guanosina Tetrafosfato , Nucleotídeos
5.
Angew Chem Int Ed Engl ; 61(24): e202116142, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35218274

RESUMO

(Pre-)anthraquinones are widely distributed natural compounds and occur in plants, fungi, microorganisms, and animals, with atrochrysone (1) as the key biosynthetic precursor. Chemical analyses established mushrooms of the genus Cortinarius-the webcaps-as producers of atrochrysone-derived octaketide pigments. However, more recent genomic data did not provide any evidence for known atrochrysone carboxylic acid (4) synthases nor any other polyketide synthase (PKS) producing oligocyclic metabolites. Here, we describe an unprecedented class of non-reducing (NR-)PKS. In vitro assays with recombinant enzyme in combination with in vivo product formation in the heterologous host Aspergillus niger established CoPKS1 and CoPKS4 of C. odorifer as members of a new class of atrochrysone carboxylic acid synthases. CoPKS4 catalyzed both hepta- and octaketide synthesis and yielded 6-hydroxymusizin (6), along with 4. These first mushroom PKSs for oligocyclic products illustrate how the biosynthesis of bioactive natural metabolites evolved independently in various groups of life.


Assuntos
Agaricales , Policetídeos , Agaricales/metabolismo , Antraquinonas/química , Policetídeo Sintases/metabolismo , Policetídeos/metabolismo
6.
Nat Prod Rep ; 38(7): 1408, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34160510

RESUMO

Correction for 'Regio- and stereoselective intermolecular phenol coupling enzymes in secondary metabolite biosynthesis' by Wolfgang Hüttel et al., Nat. Prod. Rep., 2021, 38, 1011-1043, DOI: 10.1039/d0np00010h.

7.
Nat Prod Rep ; 38(5): 1011-1043, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33196733

RESUMO

Covering: 2005 to 2020Phenol coupling is a key reaction in the biosynthesis of important biopolymers such as lignin and melanin and of a plethora of biarylic secondary metabolites. The reaction usually leads to several different regioisomeric products due to the delocalization of a radical in the reaction intermediates. If axial chirality is involved, stereoisomeric products are obtained provided no external factor influences the selectivity. Hence, in non-enzymatic organic synthesis it is notoriously difficult to control the selectivity of the reaction, in particular if the coupling is intermolecular. From biosynthesis, it is known that especially fungi, plants, and bacteria produce biarylic compounds regio- and stereoselectively. Nonetheless, the involved enzymes long evaded discovery. First progress was made in the late 1990s; however, the breakthrough came only with the genomic era and, in particular, in the last few years the number of relevant publications has dramatically increased. The discoveries reviewed in this article reveal a remarkable diversity of enzymes that catalyze oxidative intermolecular phenol coupling, including various classes of laccases, cytochrome P450 enzymes, and heme peroxidases. Particularly in the case of laccases, the catalytic systems are often complex and additional proteins, substrates, or reaction conditions have a strong influence on activity and regio- and atroposelectivity. Although the field of (selective) enzymatic phenol coupling is still in its infancy, the diversity of enzymes identified recently could make it easier to select suitable candidates for biotechnological development and to approach this challenging reaction through biocatalysis.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Lacase/metabolismo , Fenóis/metabolismo , Metabolismo Secundário , Transferases/metabolismo , Estrutura Molecular , Estereoisomerismo
8.
Appl Microbiol Biotechnol ; 105(1): 55-66, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33270153

RESUMO

Echinocandins are a clinically important class of non-ribosomal antifungal lipopeptides produced by filamentous fungi. Due to their complex structure, which is characterized by numerous hydroxylated non-proteinogenic amino acids, echinocandin antifungal agents are manufactured semisynthetically. The development of optimized echinocandin structures is therefore closely connected to their biosynthesis. Enormous efforts in industrial research and development including fermentation, classical mutagenesis, isotope labeling, and chemical synthesis eventually led to the development of the active ingredients caspofungin, micafungin, and anidulafungin, which are now used as first-line treatments against invasive mycosis. In the last years, echinocandin biosynthetic gene clusters have been identified, which allowed for the elucidation but also engineering of echinocandin biosynthesis on the molecular level. After a short description of the history of echinocandin research, this review provides an overview of the current knowledge of echinocandin biosynthesis with a special focus of the diverse structural elements, their biosynthetic background, and structure-activity relationships. KEY POINTS: • Complex and highly oxidized lipopeptides produced by fungi. • Crucial in the design of drugs: side chain, solubility, and hydrolytic stability. • Genetic methods for engineering biosynthesis have recently become available.


Assuntos
Antifúngicos , Equinocandinas , Antifúngicos/uso terapêutico , Fungos/genética , Lipopeptídeos , Testes de Sensibilidade Microbiana , Família Multigênica
9.
Appl Environ Microbiol ; 84(7)2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29352089

RESUMO

Echinocandins are antifungal nonribosomal hexapeptides produced by fungi. Two of the amino acids are hydroxy-l-prolines: trans-4-hydroxy-l-proline and, in most echinocandin structures, (trans-2,3)-3-hydroxy-(trans-2,4)-4-methyl-l-proline. In the case of echinocandin biosynthesis by Glarea lozoyensis, both amino acids are found in pneumocandin A0, while in pneumocandin B0 the latter residue is replaced by trans-3-hydroxy-l-proline (3-Hyp). We have recently reported that all three amino acids are generated by the 2-oxoglutarate-dependent proline hydroxylase GloF. In echinocandin B biosynthesis by Aspergillus species, 3-Hyp derivatives have not been reported. Here we describe the heterologous production and kinetic characterization of HtyE, the 2-oxoglutarate-dependent proline hydroxylase from the echinocandin B biosynthetic cluster in Aspergillus pachycristatus Surprisingly, l-proline hydroxylation with HtyE resulted in an even higher proportion (∼30%) of 3-Hyp than that with GloF. This suggests that the selectivity for methylated 3-Hyp in echinocandin B biosynthesis is due solely to a substrate-specific adenylation domain of the nonribosomal peptide synthetase. Moreover, we observed that one product of HtyE catalysis, 3-hydroxy-4-methyl-l-proline, is slowly further oxidized at the methyl group, giving 3-hydroxy-4-hydroxymethyl-l-proline, upon prolonged incubation with HtyE. This dihydroxylated amino acid has been reported as a building block of cryptocandin, an echinocandin produced by CryptosporiopsisIMPORTANCE Secondary metabolites from bacteria and fungi are often produced by sets of biosynthetic enzymes encoded in distinct gene clusters. Usually, each enzyme catalyzes one biosynthetic step, but multiple reactions are also possible. Pneumocandins A0 and B0 are produced by the fungus Glarea lozoyensis They belong to the echinocandin family, a group of nonribosomal cyclic lipopeptides that exhibit a strong antifungal activity. Chemical derivatives are important drugs for the treatment of systemic fungal infections. We have recently shown that in the biosynthesis of pneumocandins A0 and B0, three hydroxyproline building blocks are provided by one proline hydroxylase. Here we demonstrate that the proline hydroxylase from echinocandin B biosynthesis in Aspergillus pachycristatus produces the same hydroxyprolines, with an increased proportion of trans-3-hydroxyproline. However, echinocandin B biosynthesis does not require trans-3-hydroxyproline; its formation remains cryptic. While one can only speculate on the evolutionary background of this unexpected finding, proline hydroxylation in G. lozoyensis and A. pachycristatus provides an unusual insight into peptide antibiotic biosynthesis-namely, the complex interplay between the selectivity of a hydroxylase and the substrate specificity of a nonribosomal peptide synthetase.


Assuntos
Ascomicetos/metabolismo , Aspergillus/metabolismo , Equinocandinas/biossíntese , Proteínas Fúngicas/biossíntese , Hidroxiprolina/metabolismo , Antifúngicos/metabolismo
10.
Chembiochem ; 18(15): 1523-1528, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28489306

RESUMO

Proline hydroxylases are iron(II)/2-oxoglutarate-dependent enzymes that hydroxylate l-proline and derivatives, such as lpipecolic acid, which is the six-membered-ring homologue of l-proline. It has been established that there is a distinct group of conserved bacterial enzymes that hydroxylate l-pipecolic acid and trans-3- and trans-4-methyl-l-proline, but virtually no l-proline. This allows the organism to produce hydroxyproline congeners without hydroxylation of the physiologically omnipresent l-proline. In vitro conversions showed that the substrate spectrum of the pipecolic acid hydroxylases GetF (from a Streptomyces sp.; producer of the tetrapeptide antibiotic GE81112) and PiFa (from Frankia alni) overlaps that of proline hydroxylases, except for the nonacceptance of l-proline and smaller homologues. Distinct and conserved residues were determined for both types of enzymes. However, site-directed mutagenesis in GetF did not yield variants that accepted l-proline; this suggested a complex interaction of several residues around the active site, which resulted in delicate changes in substrate specificity. This is supported by substrate docking in a homology model of GetF, which revealed an altered orientation for l-proline relative to that of preferred substrates.


Assuntos
Proteínas de Bactérias/química , Ácidos Pipecólicos/química , Prolina/química , Prolil Hidroxilases/química , Proteínas de Bactérias/genética , Domínio Catalítico , Frankia/enzimologia , Hidroxilação , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Prolil Hidroxilases/genética , Streptomyces/enzimologia , Especificidade por Substrato
11.
Z Naturforsch C J Biosci ; 72(1-2): 1-20, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27705900

RESUMO

Echinocandins are an important group of cyclic non-ribosomal peptides with strong antifungal activity produced by filamentous fungi from Aspergillaceae and Leotiomycetes. Their structure is characterized by numerous hydroxylated non-proteinogenic amino acids. Biosynthetic clusters discovered in the last years contain up to six oxygenases, all of which are involved in amino acid modifications. Especially, variations in the oxidation pattern induced by these enzymes account for a remarkable structural diversity among the echinocandins. This review provides an overview of the current knowledge of echinocandin biosynthesis with a special focus on diversity-inducing oxidation steps. The emergence of metabolic diversity is further discussed on the basis of a comprehensive overview of the structurally characterized echinocandins, their producer strains and biosynthetic clusters. For the pneumocandins, echinocandins produced by Glarea lozoyensis, the formation of metabolic diversity in a single organism is analyzed. It is compared to two common models for the evolution of secondary metabolism: the 'target-based' approach and the 'diversity-based' model. Whereas the early phase of pneumocandin biosynthesis supports the target-based model, the diversity-inducing late steps and most oxidation reactions best fit the diversity-based approach. Moreover, two types of diversity-inducing steps can be distinguished. Although incomplete hydroxylation is a common phenomenon in echinocandin production and secondary metabolite biosynthesis in general, the incorporation of diverse hydroxyprolines at position 6 is apparently a unique feature of pneumocandin biosynthesis, which stands in stark contrast to the strict selectivity found in echinocandin biosynthesis by Aspergillaceae. The example of echinocandin biosynthesis shows that the existing models for the evolution of secondary metabolism can be well applied to parts of the pathway; however, thus far, there is no comprehensive theory that could explain the entire biosynthesis.


Assuntos
Antifúngicos/metabolismo , Equinocandinas/biossíntese , Fungos/metabolismo , Aminoácidos/metabolismo , Ascomicetos/metabolismo , Evolução Biológica , Proteínas Fúngicas/metabolismo , Hidroxilação , Microbiologia Industrial/métodos , Redes e Vias Metabólicas , Modelos Biológicos , Estrutura Molecular , Oxirredução , Oxigenases/metabolismo , Metabolismo Secundário
12.
BMC Genomics ; 17: 570, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-27502607

RESUMO

BACKGROUND: Echinocandins are nonribosomal lipopeptides produced by ascommycete fungi. Due to their strong inhibitory effect on fungal cell wall biosynthesis and lack of human toxicity, they have been developed to an important class of antifungal drugs. Since 2012, the biosynthetic gene clusters of most of the main echinocandin variants have been characterized. Especially the comparison of the clusters allows a deeper insight for the biosynthesis of these complex structures. RESULTS: In the genome of the echinocandin B producer Aspergillus nidulans NRRL 8112 we have identified a gene cluster (Ani) that encodes echinocandin biosynthesis. Sequence analyses showed that Ani is clearly delimited from the genomic context and forms a monophyletic lineage with the other echinocandin gene clusters. Importantly, we found that the disjunct genomic location of the echinocandin B gene cluster in A. pachycristatus NRRL 11440 on two separate subclusters, Ecd and Hty, at two loci was likely an artifact of genome misassembly in the absence of a reference sequence. We show that both sequences can be aligned resulting a single cluster with a gene arrangement collinear compared to other clusters of Aspergillus section Nidulantes. The reassembled gene cluster (Ecd/Hty) is identical to a putative gene cluster (AE) that was previously deposited at the NCBI as a sequence from A. delacroxii NRRL 3860. PCR amplification of a part of the gene cluster resulted a sequence that was very similar (97 % identity), but not identical to that of AE. CONCLUSIONS: The Echinocandin B biosynthetic cluster from A. nidulans NRRL 8112 (Ani) is particularly similar to that of A. pachycristatus NRRL 11440 (Ecd/Hty). Ecd/Hty was originally reported as two disjunct sub-clusters Ecd and Hty, but is in fact a continuous sequence with the same gene order as in Ani. According to sequences of PCR products amplified from genomic DNA, the echinocandin B producer A. delacroxii NRRL 3860 is closely related to A. pachycristatus NRRL 11440. A PCR-product from the gene cluster was very similar, but clearly distinct from the sequence published for A. delacroxii NRRL 3860 at the NCBI (No. AB720074). As the NCBI entry is virtually identical with the re-assembled Ecd/Hty cluster, it is likely that it originates from A. pachycristatus NRRL 11440 rather than A. delacroxii NRRL 3860.


Assuntos
Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Equinocandinas/biossíntese , Equinocandinas/genética , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/genética , Família Multigênica , Sequência de Bases , Equinocandinas/química , Equinocandinas/metabolismo , Proteínas Fúngicas/química , Homologia de Sequência
13.
J Am Chem Soc ; 137(38): 12289-95, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26389790

RESUMO

For almost 100 years, phenoxy radical coupling has been known to proceed in nature. Because of the linkage of their molecular halves (regiochemistry) and the configuration of the biaryl axis (stereochemistry), biaryls are notoriously difficult to synthesize. Whereas the intramolecular enzymatic coupling has been elucidated in detail for several examples, the bimolecular intermolecular coupling could not be assigned to one single enzyme in the biosynthesis of axially chiral biaryls. As these transformations often take place regio- and stereoselectively, enzyme-catalyzed control is reasonable. We now report the identification and expression of fungal cytochrome P450 enzymes that catalyze regio- and stereoselective intermolecular phenol couplings. The cytochrome P450 enzyme KtnC from the kotanin biosynthetic pathway of Aspergillus niger was expressed in Saccharomyces cerevisiae. The recombinant cells catalyzed the coupling of the monomeric coumarin 7-demethylsiderin both regio- and stereoselectively to the 8,8'-dimer P-orlandin, a precursor of kotanin. The sequence information obtained from the kotanin biosynthetic gene cluster was used to identify in silico a similar gene cluster in the genome of Emericella desertorum, a producer of desertorin A, the 6,8'-regioisomer of orlandin. The cytochrome P450 enzyme DesC was also expressed in S. cerevisiae and was found to regio- and stereoselectively catalyze the coupling of 7-demethylsiderin to M-desertorin A. Our results show that fungi use highly specific cytochrome P450 enzymes for regio- and stereoselective phenol coupling. The enzymatic activities of KtnC and DesC are relevant for an understanding of the mechanism of this important biosynthetic step. These results suggest that bimolecular phenoxy radical couplings in nature can be catalyzed by phenol-coupling P450 heme enzymes, which might also apply to the plant kingdom.


Assuntos
Aspergillus niger/enzimologia , Biocatálise , Produtos Biológicos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Emericella/enzimologia , Fenol/metabolismo , Aspergillus niger/metabolismo , Produtos Biológicos/química , Sistema Enzimático do Citocromo P-450/genética , Emericella/metabolismo , Conformação Molecular , Fenol/química , Estereoisomerismo
14.
Chembiochem ; 15(16): 2365-9, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25270390

RESUMO

Echinocandins are cyclic nonribosomal hexapeptides based mostly on nonproteinogenic amino acids and displaying strong antifungal activity. Despite previous studies on their biosynthesis by fungi, the origin of three amino acids, trans-4- and trans-3-hydroxyproline, as well as trans-3-hydroxy-4-methylproline, is still unknown. Here we describe the identification, overexpression, and characterization of GloF, the first eukaryotic α-ketoglutarate/Fe(II) -dependent proline hydroxylase from the pneumocandin biosynthesis cluster of the fungus Glarea lozoyensis ATCC 74030. In in vitro transformations with L-proline, GloF generates trans-4- and trans-3-hydroxyproline simultaneously in a ratio of 8:1; the latter reaction was previously unknown for proline hydroxylase catalysis. trans-4-Methyl-L-proline is converted into the corresponding trans-3-hydroxyproline. All three hydroxyprolines required for the biosynthesis of the echinocandins pneumocandins A0 and B0 in G. lozoyensis are thus provided by GloF. Sequence analyses revealed that GloF is not related to bacterial proline hydroxylases, and none of the putative proteins with high sequence similarity in the databases has been characterized so far.


Assuntos
Equinocandinas/biossíntese , Proteínas Fúngicas/metabolismo , Prolil Hidroxilases/metabolismo , Sequência de Bases , Equinocandinas/química , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Isomerismo , Cinética , Dados de Sequência Molecular , Família Multigênica , Prolina/química , Prolina/metabolismo , Prolil Hidroxilases/química , Prolil Hidroxilases/genética , Saccharomycetales/enzimologia
15.
Extremophiles ; 18(4): 641-51, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24794033

RESUMO

4-Hydroxyphenylpyruvate dioxygenase (Hpd, EC 1.13.11.27) catalyzes the conversion of 4-hydroxyphenylpyruvate into homogentisate in the second step of oxidative tyrosine catabolism. This pathway is known from bacteria and eukaryotes, but so far no archaeal Hpd has been described. Here, we report the biochemical characterization of an Hpd from the extremophilic archaeon Picrophilus torridus (Pt_Hpd), together with its three-dimensional structure at a resolution of 2.6 Å. Two pH optima were observed at 50 °C: pH 4.0 (close to native conditions) and pH 7.0. The enzyme showed only moderate thermostability and was inactivated with a half-life of ~1.5 h even under optimal reaction conditions. At the ideal physiological growth conditions of P. torridus, Pt_Hpd was inactive after 1 h, showing that the enzyme is protected in vivo from denaturation and/or is only partially adapted to the harsh environmental conditions in the cytosol of P. torridus. The influence of different additives on the activity was investigated. Pt_Hpd exhibited a turnover number k(cat) of 9.9 ± 0.6 s(-1) and a substrate binding affinity K(m) of 142 ± 23 µM. In addition, substrate inhibition with a binding affinity K(i) of 1.9 ± 0.3 mM was observed. Pt_Hpd is compared with isoenzymes from other species and the putative bacterial origin of the gene is discussed.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase/química , Proteínas Arqueais/química , Thermoplasmales/enzimologia , 4-Hidroxifenilpiruvato Dioxigenase/genética , 4-Hidroxifenilpiruvato Dioxigenase/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Clonagem Molecular , Cinética , Dados de Sequência Molecular , Filogenia , Conformação Proteica
16.
Beilstein J Org Chem ; 10: 361-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24605157

RESUMO

Polyether antibiotics such as monensin are biosynthesised via a cascade of directed ring expansions operating on a putative polyepoxide precursor. The resulting structures containing fused cyclic ethers and a lipophilic backbone can form strong ionophoric complexes with certain metal cations. In this work, we demonstrate for monensin biosynthesis that, as well as ether formation, a late-stage hydroxylation step is crucial for the correct formation of the sodium monensin complex. We have investigated the last two steps in monensin biosynthesis, namely hydroxylation catalysed by the P450 monooxygenase MonD and O-methylation catalysed by the methyl-transferase MonE. The corresponding genes were deleted in-frame in a monensin-overproducing strain of Streptomyces cinnamonensis. The mutants produced the expected monensin derivatives in excellent yields (ΔmonD: 1.13 g L(-1) dehydroxymonensin; ΔmonE: 0.50 g L(-1) demethylmonensin; and double mutant ΔmonDΔmonE: 0.34 g L(-1) dehydroxydemethylmonensin). Single crystals were obtained from purified fractions of dehydroxymonensin and demethylmonensin. X-ray structure analysis revealed that the conformation of sodium dimethylmonensin is very similar to that of sodium monensin. In contrast, the coordination of the sodium ion is significantly different in the sodium dehydroxymonensin complex. This shows that the final constitution of the sodium monensin complex requires this tailoring step as well as polyether formation.

17.
PLoS One ; 8(9): e74792, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086376

RESUMO

BACKGROUND: Glarea lozoyensis is a filamentous fungus used for the industrial production of non-ribosomal peptide pneumocandin B0. In the scope of a whole genome sequencing the complete mitochondrial genome of the fungus has been assembled and annotated. It is the first one of the large polyphyletic Helotiaceae family. A phylogenetic analysis was performed based on conserved proteins of the oxidative phosphorylation system in mitochondrial genomes. RESULTS: The total size of the mitochondrial genome is 45,038 bp. It contains the expected 14 genes coding for proteins related to oxidative phosphorylation,two rRNA genes, six hypothetical proteins, three intronic genes of which two are homing endonucleases and a ribosomal protein rps3. Additionally there is a set of 33 tRNA genes. All genes are located on the same strand. Phylogenetic analyses based on concatenated mitochondrial protein sequences confirmed that G. lozoyensis belongs to the order of Helotiales and that it is most closely related to Phialocephala subalpina. However, a comparison with the three other mitochondrial genomes known from Helotialean species revealed remarkable differences in size, gene content and sequence. Moreover, it was found that the gene order found in P. subalpina and Sclerotinia sclerotiorum is not conserved in G. lozoyensis. CONCLUSION: The arrangement of genes and other differences found between the mitochondrial genome of G. lozoyensis and those of other Helotiales indicates a broad genetic diversity within this large order. Further mitochondrial genomes are required in order to determine whether there is a continuous transition between the different forms of mitochondrial genomes or G. lozoyensis belongs to a distinct subgroup within Helotiales.


Assuntos
Ascomicetos/genética , Variação Genética , Genoma Fúngico/genética , Genoma Mitocondrial/genética , Filogenia , Mapeamento Cromossômico , Códon/genética , Proteínas Fúngicas/metabolismo , Ordem dos Genes , Genes Fúngicos/genética , Código Genético , Íntrons/genética , Proteínas Mitocondriais/metabolismo , Dados de Sequência Molecular , Fases de Leitura Aberta/genética , RNA de Transferência/genética
18.
Angew Chem Int Ed Engl ; 51(39): 9788-91, 2012 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-22945023

RESUMO

Piecing it together: Aspergillus niger produces kotanin by dimerization of the monomeric, polyketide-synthase-derived (PKS) 7-demethylsiderin. A combined approach, comprising bioinformatics and gene-deletion experiments, identified the biosynthetic cluster responsible for kotanin production. Homology modeling and substrate docking provide a rationale for the regio- and stereoselective phenol coupling reaction.


Assuntos
Aspergillus niger/metabolismo , Cumarínicos/metabolismo , Fenóis/metabolismo , Policetídeos/metabolismo , Aspergillus niger/química , Aspergillus niger/enzimologia , Cumarínicos/química , Modelos Moleculares , Acoplamento Oxidativo , Fenóis/química , Policetídeos/química , Estereoisomerismo
19.
Eukaryot Cell ; 11(2): 250, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22302591

RESUMO

The anamorphic fungus Glarea lozoyensis mutant strain 74030 is an overproducer of pneumocandin B(0), which is chemically converted into Cancidas, a potent antibiotic against clinically important fungal pathogens. Pneumocandins are acylated, cyclic hexapeptides with unusual hydroxylated amino acids. With the Glarea lozoyensis genome, the first species from the large polyphyletic family Helotiaceae has been sequenced.


Assuntos
Ascomicetos/genética , Genoma Fúngico , Ascomicetos/metabolismo , Sequência de Bases , Dados de Sequência Molecular , Peptídeos Cíclicos/química
20.
Beilstein J Org Chem ; 7: 1643-7, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22238542

RESUMO

The enzymatic synthesis of tertiary alcohols by the stereospecific oxidation of tertiary alkyl centers is a most-straightforward but challenging approach, since these positions are sterically hindered. In contrast to P450-monooxygenases, there is little known about the potential of non-heme iron(II) oxygenases to catalyze such reactions. We have studied the hydroxylation of trans-3-methyl-L-proline with the α-ketoglutarate (α-KG) dependent oxygenases, cis-3-proline hydroxylase type II and cis-4-proline hydroxylase (cis-P3H_II and cis-P4H). With cis-P3H_II, the tertiary alcohol product (3R)-3-hydroxy-3-methyl-L-proline was obtained exclusively but in reduced yield (~7%) compared to the native substrate L-proline. For cis-P4H, a complete shift in regioselectivity from C-4 to C-3 was observed so that the same product as with cis-P3H_II was obtained. Moreover, the yields were at least as good as in control reactions with L-proline (~110% relative yield). This result demonstrates a remarkable potential of non-heme iron(II) oxygenases to oxidize substrates selectively at sterically hindered positions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...