Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 282: 116694, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38971101

RESUMO

In this study, a microcosm experiment was conducted to investigate the effects of Na2S2O8 preoxidation combined with biostimulation on petroleum-contaminated soil remediation. The response of microbial community during this process was explored using BIOLOG ECO microplate carbon utilization method and 16 s rDNA high-throughput sequencing. The results showed that use of 10 mg/g Na2S2O8 removed 19.8 % of the petroleum hydrocarbons, reduced soil biotoxicity and did not affect soil microbial activity compared to other concentrations. Therefore, sodium persulfate of ca. 10 mg/g was used to oxidize petroleum in soil before the biostimulation experiment with organic and inorganic fertilizers. Our finding showed that the content of total petroleum hydrocarbons (TPHs) in soil was reduced by 43.3 % in inorganic fertilizer treatment after 60 days. The results of BIOLOG ECO microplate carbon utilization analysis and 16 S rDNA high-throughput sequencing further confirmed that biostimulation quickly restored the microbial activities in oxidant treated soil. The main marker bacteria in chemical oxidation combined with biostimulation remediation were Arthrobacter and Paenarthrobacter, and their relative abundances were both significantly negatively correlated with the content of petroleum hydrocarbons in soil.

2.
Chemosphere ; 360: 142379, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38777200

RESUMO

Biodegradation is difficult at high temperatures due to the limited capacity of microorganisms to survive and function outside their optimum temperature range. Here, a thermophilic petroleum-degrading consortium was enriched from compost at a temperature of 55 °C. 16S rDNA and metagenomic techniques were used to analyze the composition of the consortium and the mechanisms of degradation. The consortium degraded 17000 mg total petroleum hydrocarbons (TPHs) L-1 with a degradation efficiency of 81.5% in 14 days. The consortium utilized a range of substrates such as n-hexadecane, n-docosane, naphthalene and pyrene and grew well over a wide range of pH (4-10) and salinity (0-90 g L-1). The hydrocarbon-degrading extremophilic consortium contained, inter alia, (relative abundance >1%) Caldibacillus, Geobacillus, Mycolicibacterium, Bacillus, Chelatococcus, and Aeribacillus spp. Metagenomic analysis was conducted to discover the degradation and environmental tolerance functional genes of the consortium. Two alkane hydroxylase genes, alkB and ladA, were found. A microcosm study shows that the consortium promoted the bioremediation of soil TPHs. The results indicate that the consortium may be a good candidate for the high-temperature bioremediation of petroleum-contaminated soils.


Assuntos
Bactérias , Biodegradação Ambiental , Metagenômica , Petróleo , Microbiologia do Solo , Poluentes do Solo , Petróleo/metabolismo , Poluentes do Solo/metabolismo , Poluentes do Solo/análise , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Consórcios Microbianos , Hidrocarbonetos/metabolismo , Poluição por Petróleo , Solo/química , RNA Ribossômico 16S/genética , Alcanos/metabolismo
3.
Food Chem X ; 22: 101405, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38694543

RESUMO

This study investigated the effect of inulin with different polymerization degrees (DP), including L-inulin (DP 2-6), M-inulin (DP 10-23) and H-inulin (DP 23-46), on the structural and gelation properties of potato protein isolate (PPI). Results revealed that textural properties (hardness, cohesiveness, springiness and chewiness) and water-holding capacity (WHC) of PPI-inulin composite gels were positively correlated with the inulin DP and addition content at 0-1.5% (w/v), but deteriorated at 2% due to phase separation. The addition of 1.5% H-inulin showed the most significant increment effects on the WHC (18.65%) and hardness (2.84 N) of PPI gel. Furthermore, M-/H-inulin were more effective in increasing the whiteness and surface hydrophobicity, as well as in strengthening hydrogen bonds and hydrophobic interactions than L-inulin. Fourier transform infrared spectroscopy analysis and microstructural observation indicated that inulin with higher DP promoted more generation of ß-sheet structures, and leading to the formation of stronger and finer network structures.

4.
China CDC Wkly ; 5(48): 1067-1072, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38058987

RESUMO

What is already known about this topic?: Acquired immunodeficiency syndrome (AIDS) represents a significant public health challenge globally, not only inflicting harm on the health of individuals but also placing a considerable economic strain on society. What is added by this report?: This study represents the inaugural report on the potential reduction in economic burden attributable to human immunodeficiency virus (HIV) prevention strategies in Tianjin. Between 2011 and 2022, it is estimated that effective measures could prevent 2,965 new HIV infections and avert 658 deaths, resulting in an economic benefit of approximately 14.437 billion Chinese Yuan. What are the implications for public health practice?: The findings of this study offer valuable evidence to inform the development of localized HIV prevention and control strategies, as well as to guide public health policymaking.

5.
Chem Commun (Camb) ; 59(92): 13759-13762, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37916505

RESUMO

A visible-light-mediated glycosylation reaction between glycosyl redox-active esters and disulfides has been reported, through which a series of S-aryl glycosides were obtained in good yields with satisfactory stereoselectivity. The preliminary mechanistic studies revealed that this transformation proceeded via an EDA complex. Moreover, the potential application value was demonstrated in the late-stage functionalisation of drug molecules and a gram-scale experiment.

6.
Sci Total Environ ; 904: 166759, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37659531

RESUMO

A bacterial consortium, termed WPB, was obtained from polycyclic aromatic hydrocarbons (PAHs) contaminated soil from a coking site. The consortium effectively degraded 100 mg L-1 pyrene by 94.8 % within 12 days. WPB was also able to degrade phenanthrene (98.3 %) and benzo[a]pyrene (24.6 %) in 12 days, while the individual isolates showed no PAHs degrading ability. Paracoccus sp. dominated the bacterial consortium (65.0-86.2 %) throughout the degradation process. Metagenomic sequencing reveals the proportion of sequences with xenobiotics biodegradation and metabolism increased throughout the degradation process indicating the great potential of WPB to degrade pollutants. The annotation of genes by metagenomic analysis help reconstruct the degradation pathways ("phthalate pathway" and "naphthalene degradation") and reveal how different bacteria contribute to the degradation process. Mycobacterium gilvum was found to carry nidAB genes that catalyze the first step of high-molecular-weight (HMW) PAHs in the degradation process despite Mycobacterium gilvum accounting for only 0.005-0.06 %. In addition, genomes of Paracoccus denitrificans and some other genera affiliated with Devosia, Pusillimonas caeni and Eoetvoesia caeni were successfully recovered and were found to carry genes responsible for the degradation of the intermediates of pyrene. These results enable further understanding of the metabolic patterns of pyrene-degrading consortia and provide direction for further cultivation and discovery of key players in complex microbial consortia.


Assuntos
Coque , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Pirenos/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , Poluentes do Solo/metabolismo
7.
Front Microbiol ; 14: 1245581, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37664114

RESUMO

Introduction: Animal trade favors the spreading of emerging canine adenovirus 1 (CAdV-1) in mink. Because the 100K protein is not exposed to the viral surface at any stage, it can be used to differentiate the vaccine from wild virus infection. However, no related research has been conducted. This study aimed to find evidence of CAdV-1 in mink and predict the character of the 100K protein in the current circulating CAdV-1 strain of mink. Method: In this experiment, the identification of CAdV-1, the phylogenetic tree, homology, and bioinformatics analysis of 100K were conducted. Results: The results showed that the CAdV-1 was identified in the mink and that its Fiber was located in a separate branch. It was closely related to strains isolated from Norwegian Arctic fox and Red fox. 100K was located in a separate branch, which had the closest genetic relationship with skunks, porcupines, raccoons, and hedgehogs and a far genetic relationship with the strains in dogs. 100K protein is an unstable and hydrophobic protein. It had evidence of selective pressure and recombination, 1 glycosylation site, 48 phosphorylation sites, 60 dominant B cell epitopes, and 9 peptides of MHC-I and MHC-II. Its subcellular localization was mainly in the endoplasmic reticulum and mitochondria. The binding sites of 100K proteins were DBP proteins and 33K proteins. Discussion: The stains in the mink were different from fox. The exploration of its genomic characteristics will provide us with a deeper understanding of the prevention of canine adenovirus.

8.
J Hazard Mater ; 452: 131220, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37003001

RESUMO

Chlorinated aliphatic hydrocarbons (CAHs) are potentially toxic substances that have been detected in various contaminated environments. Biological elimination is the main technique of detoxifying CAHs in the contaminated sites, but the soil bacterial community at CAH-contaminated sites have been little investigated. Here, high-throughput sequencing analysis of soil samples from different depths (to 6 m depth) at an aged CAH-contaminated site has been conducted to investigate the community composition, function, and assembly of soil bacteria. The alpha diversity of the bacterial community significantly increased with increasing depth and bacterial community also became more convergent with increasing depth. Organohalide-respiring bacteria (OHRB) is considered keystone taxa to reduce the environmental stress of CAHs by reductive dechlorinate CAHs into nontoxic products, increases the alpha diversity of bacterial community and improves the stability of bacterial co-occurrence network. The high concentration of CAHs in deep soil and the stable anaerobic environment make deterministic processes dominate bacterial community assembly, while the topsoil is dominated by dispersal limitation. In general, CAHs at contaminated sites have a great impact on bacterial community, but the CAHs metabolic community acclimated in deep soil can reduce the environmental stress of CAHs, which provides foundation for the monitored natural attenuation technology in CAHs-contaminated sites.


Assuntos
Hidrocarbonetos Clorados , Poluentes Químicos da Água , Poluentes Químicos da Água/química , Hidrocarbonetos Clorados/análise , Bactérias/genética , Hidrocarbonetos , Solo , Microbiologia do Solo
9.
Chemosphere ; 322: 138225, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36828103

RESUMO

Surfactant-enhanced bioremediation (SEBR) is frequently employed to clean up soil polluted with petroleum hydrocarbons, but few studies have focused on how surfactants affect microbial communities and different fractions of petroleum hydrocarbons, particularly in the field. Here, the surfactants sodium dodecyl benzene sulfonate (SDBS), alpha olefin sulfonate (AOS), Triton X-100 (TX-100), Tween80, and rhamnolipid were combined with the oil-degrading bacterium Pseudomonas sp. SB to remediate oil-contaminated soil in the laboratory. AOS gave the highest removal efficiency (65.1%) of total petroleum hydrocarbons (TPHs). Therefore, AOS was used in a field experiment with Pseudomonas sp. SB and the removal efficiency of TPHs and long-chain hydrocarbons C21-C40 reached 57.4 and 53.0%, respectively, significantly higher than the other treatments. During bioremediation the addition of Pseudomonas sp. SB significantly stimulated the growth of bacterial genera such as Alcanivorax, Luteimonas, Parvibaculum, Stenotrophomonas, and Pseudomonas and AOS further stimulated the growth of Sphingobacterium, Pseudomonas and Alcanivorax. This study validates the feasibility of surfactant-enhanced bioremediation in the field and partly reveals the mechanism of surfactant-enhanced bioremediation from the perspective of changes in different fractions of petroleum and microbial community dynamics.


Assuntos
Microbiota , Petróleo , Surfactantes Pulmonares , Poluentes do Solo , Biodegradação Ambiental , Tensoativos , Poluentes do Solo/análise , Microbiologia do Solo , Hidrocarbonetos , Pseudomonas , Alcenos , Bactérias , Solo
10.
Sci Total Environ ; 863: 160917, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36529394

RESUMO

Microbial communities are closely related to plant performance and numerous studies have shown their involvement with the growth and development of host plants, resistance to pathogen invasion and adaptation to environmental stress. Here we described in detail the ecological process of the microbial community assembly in hyperaccumulator plant Sedum plumbizincicola. We divided the microbiota into four ecological compartments (bulk soil, rhizosphere, root endosphere and aboveground endosphere). The results showed that host selection strongly controlled the aggregation of microbial community. So that microbes occupied different niches from the bulk soil to the aboveground endosphere, and bacterial diversity and network complexity decreased gradually. Soil types were the second influencing factor, especially for the microbial community in the root endosphere. The SourceTracker analysis further confirmed the vertical migration of microbes from bulk soil to aboveground endosphere. In addition, under the condition of heavy metal pollution, the microbial community of S. plumbizincicola tended to form a microbial pool dominated by Proteobacteria and Actinobacteria. Ellin6067, Sphingomonas, Ralstonia, SC-I-84_uncultured bacterium, Burkholderiaceae_Undibacterium and Pedosphaeraceae_uncultured bacterium etc. were identified as the vital biomarker taxa. Among these genera, the relative abundance of last three was significantly positively correlated with the activation and transfer of cadmium, and they mainly enriched in paddy soil. This study provides evidence for the mechanism by which the microbial community assembly occurs and experience for regulating the microbial community and increasing the accumulation efficiency of potentially toxic metals in S. plumbizincicola.


Assuntos
Microbiota , Sedum , Poluentes do Solo , Cádmio/análise , Solo , Biodegradação Ambiental , Poluentes do Solo/análise , Bactérias , Plantas , Raízes de Plantas/microbiologia
11.
Journal of Preventive Medicine ; (12): 475-479, 2023.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-976224

RESUMO

Objective@#To investigate the detection of HIV/AIDS cases in medical institutions in Tianjin Municipality from 2005 to 2021, so as to provide insights into optimization of HIV antibody testing strategies in medical institutions.@*Methods@#All data pertaining to individuals receiving HIV antibody tests in medical institutions in Tianjin Municipality from 2005 to 2021 were collected from the information systems in medical institutions and the HIV/AIDS Prevention and Control Information System of Chinese Disease Prevention and Control Information System. The positive rate of HIV antibody and epidemiological characteristics of HIV/AIDS cases in medical institutions were analyzed.@*Results@#The number of HIV antibody tests increased from 86 102 person-times in 2005 to 1 369 345 person-times in 2021 in medical institutions in Tianjin Municipality, with annual increase by 18.88%. The positive rate of HIV antibody increased from 2.44/104 to 2.85/104 (P<0.05), with annual increase by 2.79/104. Both the proportion of the number of HIV antibody tests and the number of HIV/AIDS cases detected by medical institutions in the whole city appeared a tendency towards a rise (P<0.05). A high positive rate of HIV antibody was seen in sexually transmitted disease clinics (53.69/104) and other testing services (12.25/104), and the highest positive rate of HIV antibody was seen in individuals at ages of 20 to 39 years (5.40/104), while the positive rate of HIV antibody was higher in men (5.84/104) than in women (0.53/104) (P<0.05). A total of 3 610 HIV/AIDS cases were detected in medical institutions in Tianjin Municipality from 2005 to 2021, with a median age of 38 (interquartile range, 24) years. Of all HIV/AIDS patients, there were 3 277 men (90.78%), and men who have sex with men was the predominant transmission route (63.46%), while the proportion of late identification of HIV/AIDS cases was 65.60%. In addition, the proportion of timely detection for the first CD4+T lymphocyte count testing increased from 23.81% in 2005 to 71.54% in 2021 (P<0.05).@*Conclusions@#The number of HIV antibody tests and positive rate of HIV antibody appeared a tendency towards a rise in medical institutions in Tianjin Municipality from 2005 to 2021. The HIV/AIDS cases were predominantly identified in sexually transmitted disease clinics and other testing services, and were predominantly men.

12.
Front Cell Infect Microbiol ; 12: 879360, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35770071

RESUMO

Canine adenovirus type 1 (CAdV-1) is a double-stranded DNA virus, which is the causative agent of fox encephalitis. The Fiber protein is one of the structural proteins in CAdV-1, which mediates virion binding to the coxsackievirus and adenovirus receptor on host cells. The suspected virus was cultured in the MDCK cells, and it was determined through the cytopathic effects, sequencing and electron microscopy. The informatics analysis of the Fiber was done using online bioinformatics servers. The CAdV-1-JL2021 strain was isolated successfully, and were most similar to the CAdV-1 strain circulating in Italy. The occurrence of negative selection and recombination were found in the CAdV-1-JL2021 and CAdV-2-AC_000020.1. Host cell membrane was its subcellular localization. The CAdV-1-JL2021 Fiber (ON164651) had 6 glycosylation sites and 107 phosphorylation sites, exerted adhesion receptor-mediated virion attachment to host cell, which was the same as CAdV-2-AC_000020.1 Fiber. The Fiber tertiary structure of the CAdV-1-JL2021 and CAdV-2-AC_000020.1 was different, but they had the same coxsackievirus and adenovirus receptor. "VATTSPTLTFAYPLIKNNNH" were predicted to be the potential CAdV-1 B cell linear epitope. The MHC-I binding peptide "KLGVKPTTY" were both presented in the CAdV-1-JL2021 and CAdV-2-AC_000020.1 Fiber and it is useful to design the canine adenovirus vaccine.


Assuntos
Infecções por Adenoviridae , Adenovirus Caninos , Infecções por Adenoviridae/epidemiologia , Adenovirus Caninos/genética , Animais , Biologia Computacional , Cães , Itália/epidemiologia
13.
Front Cell Infect Microbiol ; 12: 854876, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360116

RESUMO

Canine adenoviruses (CAdVs) include type 1 (CAdV-1, virulent strain) and type 2 (CAdV-2, attenuated strain). In recent years, the incidences of CAdV infections are increasing. However, they are difficult to distinguish when the symptoms are untypical. It is pivotal to find the differences between the two virus types for scientific, epidemiological, and specific treatment. CAdV-1 (virulent strain) and CAdV-2 (attenuated strain) induced canine hepatitis (ICH) and tracheobronchitis (ITB), respectively, but the clinical symptom is not obvious. CAdV-1 and CAdV-2 have the same genome structure, diameter, morphological features, and cytopathic features, but the same character hinder the diagnose time of the serotypes. CAdV-1 and CAdV-2 have a difference in the genome sequence, coding proteins, viral activity, hemagglutination patterns. After infection, pathogenicity and transmission route are different between the two serotypes. Sequence alignment, PCR, Real time-PCR assay are useful methods to distinguish the two serotypes. The attenuated live CAdV-2 vaccine is currently used to protect against CAdV-1, but it also has a risk. The further research should focus on the pathogenicity mechanism and the useful vaccine for the two serotypes of canine adenovirus.


Assuntos
Adenovirus Caninos , Adenovirus Caninos/genética , Animais , Cães , Reação em Cadeia da Polimerase em Tempo Real/métodos
14.
J Hazard Mater ; 433: 128802, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35366451

RESUMO

Zero-valent iron (ZVI) is widely used to mitigate environmental pollutants such as chlorinated pesticides through reductive reactions accompanied by extensive impacts on the soil microbial community. However, whether and how ZVI changes the biodegradation of target compounds remain poorly understood. Here, we monitor the fate of lindane using a 14C-labled tracer and evaluate the growth and functions of the bacterial community in ZVI-stressed conditions in a historically γ-hexachlorocyclohexane (lindane)-contaminated soil using a combination of isotopic (18O-H2O) and metagenomic methods. ZVI promoted the biomineralization of lindane in a dose-dependent manner. Soil bacteria were inhibited by amendment with ZVI during the initial stages of incubation (first three days) but recovered during the subsequent six weeks. Metagenomic study indicates that the todC1/bedC1 genes involved in the oxidation of dechlorinated lindane intermediates were upregulated in the 18O-labeled bacterial community but the presence of the lin genes responsible for lindane dechlorination was not confirmed. In addition, the benzoate biodegradation pathway that links to downstream catabolism of lindane was enhanced. These findings indicate successive chemical and biological degradation mechanisms underlying ZVI-enhanced lindane mineralization and provide a scientific basis for the inclusion of an extended bioremediation stage in the environmental application of ZVI materials.


Assuntos
Hexaclorocicloexano , Ferro , Biodegradação Ambiental , Ferro/química , Isótopos , Solo/química
15.
Environ Sci Pollut Res Int ; 29(36): 54641-54651, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35306650

RESUMO

Soil enzyme activities and microbial communities have a good response to the remediation effect of heavy metal-contaminated soils. To evaluate the effect of three commonly used washing agents, ferric chloride (FC), ethylenediaminetetraacetic acid (EDTA) and ethylenediamine-tetra-methylenephosphonic acid (EDTMP) on soil enzyme activities and microbial community in cadmium (Cd)-contaminated agricultural soil were collected from farmland near a non-ferrous metal smelter. The soil enzyme activities, microbial community, chemical forms of Cd and some physicochemical properties of the soil washed with different washing solutions were determined. The results showed that the three washing solutions had moderate removal efficiencies for Cd in the tested soil and the breakdown product of EDTMP has a certain stabilizing effect on Cd. The geometric mean and the integrated total enzyme activity index showed that soil washing with FC and EDTA was more beneficial to the restoration of biochemical functions than that with EDTMP. After soil washing, the Chao1 index of bacteria increased, and the microbial community structure changed. Pearson correlation analysis and redundancy analysis (RDA) indicated that the three washing solutions affected soil enzyme activities and microbial community by altering soil nutrient, total Cd concentration and Cd fractions in soils.


Assuntos
Recuperação e Remediação Ambiental , Microbiota , Poluentes do Solo , Ácidos , Cádmio/análise , Ácido Edético/química , Solo/química , Poluentes do Solo/análise
16.
Chemosphere ; 286(Pt 2): 131750, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34352537

RESUMO

The remediation effects of hydrogen peroxide (H2O2) oxidation and surfactant-leaching alone or in combination on three typical oilfield sludges were studied. The removal efficiency of total petroleum hydrocarbons (TPHs) of Jidong, Liaohe and Jiangsu oil sludges by hydrogen peroxide oxidation alone was very poor (6.5, 6.8, and 3.4 %, respectively) but increased significantly (p < 0.05), especially of long-chain hydrocarbons, by combining the use of H2O2 with surfactants (80.0, 79.8 and 82.2 %, respectively). Oxidation combined with leaching may impair microbial activity and organic manure was therefore added to the treated sludges for biostimulation and the composition and function of the microbial community were studied. The addition of manure rapidly restored sludge microbial activity and significantly increased the relative abundance of some salt-tolerant and alkali-tolerant petroleum-degrading bacteria such as Corynebacterium, Pseudomonas, Dietzia and Jeotgalicoccus. Moreover, the relative abundance of two classic petroleum-degrading enzyme genes, alkane 1-monooxygenase and catechol 1, 2-dioxygenase, increased significantly.


Assuntos
Microbiota , Petróleo , Poluentes do Solo , Biodegradação Ambiental , Hidrocarbonetos , Peróxido de Hidrogênio , Petróleo/análise , Esgotos , Microbiologia do Solo , Poluentes do Solo/análise , Tensoativos
17.
Chemosphere ; 291(Pt 3): 132912, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34785179

RESUMO

Hazardous oil sludge (OS) poses a great challenge to the environment, whereas conventional treatment methods (i.e., incineration or pyrolysis-incineration) are relatively less value-added and will bring about air pollution problems. To realize the high-value utilization of OS, catalytic co-pyrolysis with waste biomass to produce platform chemicals was studied using TG-FTIR and Py (pyrolyzer)-GC/MS methods. Results showed that for the non-catalytic co-pyrolysis of RH (rice husk) and OS, the main synergy on weight loss was the greatly lowered initial pyrolysis temperature of RH (for ∼55 °C) at the lower temperatures and the reduced weight loss ratio of OS (∼10-18 wt%) within the higher temperature range. ZSM-5 catalyst promoted the degradation of OS and RH mixtures at < 150 °C, yet showed minor effects on their weight loss at higher temperatures. The oxygenated and aliphatic compounds from non-catalytic co-pyrolysis were efficiently converted, resulting in an increased relative yield of aromatics to the highest of 46% and an elevated selectivity to BTX (as high as 60%). Despite the relatively short carbon chain length of OS components, ZSM-5 was proved effective to activate the OS pyrolysis products, thus enhancing the further aromatization reactions with biomass pyrolysis intermediates. This study provides a novel method for value-added co-utilization of hazardous OS waste and abundant biomass waste, and thus is beneficial to producing renewable chemicals while reducing the environment pollutant.


Assuntos
Pirólise , Esgotos , Biocombustíveis , Biomassa , Catálise , Temperatura Alta
18.
Cell Syst ; 12(12): 1173-1186.e5, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34536381

RESUMO

A major challenge in the analysis of highly multiplexed imaging data is the assignment of cells to a priori known cell types. Existing approaches typically solve this by clustering cells followed by manual annotation. However, these often require several subjective choices and cannot explicitly assign cells to an uncharacterized type. To help address these issues we present Astir, a probabilistic model to assign cells to cell types by integrating prior knowledge of marker proteins. Astir uses deep recognition neural networks for fast inference, allowing for annotations at the million-cell scale in the absence of a previously annotated reference. We apply Astir to over 2.4 million cells from suspension and imaging datasets and demonstrate its scalability, robustness to sample composition, and interpretable uncertainty estimates. We envision deployment of Astir either for a first broad cell type assignment or to accurately annotate cells that may serve as biomarkers in multiple disease contexts. A record of this paper's transparent peer review process is included in the supplemental information.


Assuntos
Redes Neurais de Computação , Proteômica , Análise por Conglomerados
19.
Sci Total Environ ; 792: 148411, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34465037

RESUMO

Biodegradation of soil contaminants may be promoted near plant roots due to the "rhizosphere effect" which may enhance microbial growth and activity. However, the effects of different plant cultivars within a single species on degradation remains unclear. Here, we evaluated the removal of soil total petroleum hydrocarbons (TPHs) by ten different cultivars of tall fescue grass (Festuca arundinacea L.) and their associated rhizosphere microbiomes. TPH removal efficiency across the ten different cultivars was not significantly correlated with plant biomass. Rhizing Star and Greenbrooks cultivars showed the maximum (76.6%) and minimum (62.2%) TPH removal efficiencies, respectively, after 120 days. Significant differences were observed between these two cultivars in the composition of rhizosphere bacterial and fungal communities, especially during the early stages (day 30) of remediation but the differences decreased later (day 90). Putative petroleum-degrading bacterial and fungal guilds were enriched in the presence of tall fescue. Moreover, the complexity of microbial networks declined in treatments with higher TPH removal efficiency. The relative abundances of saprotrophic fungi and putative genes alkB and C12O in bacetria involved in petroleum degradation increased, especially in the presence of Rhizing Star cultivar, and this was consistent with the TPH removal efficiency results. These results indicate the potential of tall fescue grass cultivars and their associated rhizosphere microbiomes to phytoremediate petroleum hydrocarbon-contaminated soils.


Assuntos
Festuca , Microbiota , Petróleo , Poluentes do Solo , Biodegradação Ambiental , Hidrocarbonetos , Solo , Microbiologia do Solo , Poluentes do Solo/análise
20.
Sci Total Environ ; 730: 139116, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32402971

RESUMO

Bacteria are critical ecosystem drivers in both aquatic and terrestrial ecosystems. However, our understanding of the mechanisms generating and maintaining biodiversity on large spatial scales remains limited, especially mechanisms involving rare taxa in soil ecosystems. In the present study we took paddy soils in China as model ecosystems and studied the ecological diversity and assembly mechanisms of both the rare and abundant bacterial subcommunities. We collected 339 paddy soil samples from 113 sites across 19 Chinese provinces that span distances of up to 3869 km. The bacterial community was characterized by high-throughput sequencing of the 16S rRNA gene. The α-diversity of rare and abundant subcommunities showed opposite quadratic correlations with the key environmental factor soil pH. Rare taxa exhibited a stronger distance-decay relationship than the abundant subcommunity. Moreover, deterministic selection processes dominated in the assembly of the abundant subcommunity while stochastic processes dominated in that of the rare subcommunity based on both variation partitioning analysis and the phylogenetic null model. Soil pH was also the main deterministic factor driving the geographical distributions of both the rare and abundant subcommunity. Besides, mean annul temperature and soil texture were also found to be important factors affecting the biogeography and diversity patterns of abundant and rare subcommunities. These results indicate that the mechanisms generating and maintaining the diversity of the abundant and rare subcommunities were totally different in paddy soils, suggesting that these two subcommunities may respond differently to future environmental change.


Assuntos
Oryza , Solo , Bactérias , China , Ecossistema , Filogenia , RNA Ribossômico 16S , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...