Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Meat Sci ; 219: 109680, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39368176

RESUMO

This study investigated the effects of oil-in-water emulsions used as fat substitutes on the physicochemical properties of meatballs during frozen storage. Different formulations of fat replacers were prepared, including pork fat as the control (C), oil and water (OW), oil-in-water emulsion (E), emulsion with soy protein isolate (SE), emulsion with gluten (GE), and emulsion with soy protein isolate and gluten (SG). These fat substitutes were applied to a meatball paste. The samples were stored at -18 °C for 30 and 60 days, and their physicochemical properties were analyzed after thawing at 4 °C for 12 h. The SE formulation had the highest values for both water content and liquid holding capacity during frozen storage (P < 0.05). SE, GE, and SG showed significantly higher hardness, cohesiveness, springiness, gumminess, and chewiness than those of E during storage (P < 0.05). The vegetable protein addition treatments maintained a compact structure throughout storage. SE, GE, and SG prevented lipid and protein oxidation during frozen storage. These results demonstrated that SE, GE, and SG offer significant advantages in improving the freeze-thaw stability, liquid holding capacity, and oxidation stability of pork meatballs during long-term frozen storage. Therefore, our study suggest that plant-based protein emulsions can effectively replace animal fats while maintaining product quality, offering valuable implications for the meat processing industry.

2.
J Am Chem Soc ; 130(48): 16241-4, 2008 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-18998649

RESUMO

Electron attachment to the van der Waals complexes of azabenzene-(CO(2))(n) results in the formation of covalent bonds between the nitrogen atoms of azabenzene and the carbon atom of CO(2). The newly formed C-N bonds establish an extended pi-orbital network over the entire moieties of the complex and thus greatly stabilize the anion, yielding a very large value of vertical detachment energy for the excess electron. The rare "associative" nature of electron attachment was found to be generally occurring in all azabenzene series, only subject to steric hindrance against the formation of the covalent C-N bond.


Assuntos
Compostos Aza/química , Benzeno/química , Dióxido de Carbono/química , Elétrons , Modelos Moleculares , Conformação Molecular , Nitrogênio/química , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA