Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1179934, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520347

RESUMO

Detecting and identifying the origins of foodborne pathogen outbreaks is a challenging. The Next-Generation Sequencing (NGS) panel method offers a potential solution by enabling efficient screening and identification of various bacteria in one reaction. In this study, new NGS panel primer sets that target 18 specific virulence factor genes from six target pathogens (Bacillus cereus, Yersinia enterocolitica, Staphylococcus aureus, Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus) were developed and optimized. The primer sets were validated for specificity and selectivity through singleplex PCR, confirming the expected amplicon size. Crosscheck and multiplex PCR showed no interference in the primer set or pathogenic DNA mixture. The NGS panel analysis of spiked water samples detected all 18 target genes in a single reaction, with pathogen concentrations ranging from 108 to 105 colony-forming units (CFUs) per target pathogen. Notably, the total sequence read counts from the virulence factor genes showed a positive association with the CFUs per target pathogen. However, the method exhibited relatively low sensitivity and occasional false positive results at low pathogen concentrations of 105 CFUs. To validate the detection and identification results, two sets of quantitative real-time PCR (qPCR) analyses were independently performed on the same spiked water samples, yielding almost the same efficiency and specificity compared to the NGS panel analysis. Comparative statistical analysis and Spearman correlation analysis further supported the similarity of the results by showing a negative association between the NGS panel sequence read counts and qPCR cycle threshold (Ct) values. To enhance NGS panel analysis for better detection, optimization of primer sets and real-time NGS sequencing technology are essential. Nonetheless, this study provides valuable insights into applying NGS panel analysis for multiple foodborne pathogen detection, emphasizing its potential in ensuring food safety.

2.
J Microbiol Biotechnol ; 33(1): 83-95, 2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36457187

RESUMO

These days, bacterial detection methods have some limitations in sensitivity, specificity, and multiple detection. To overcome these, novel detection and identification method is necessary to be developed. Recently, NGS panel method has been suggested to screen, detect, and even identify specific foodborne pathogens in one reaction. In this study, new NGS panel primer sets were developed to target 13 specific virulence factor genes from five types of pathogenic Escherichia coli, Listeria monocytogenes, and Salmonella enterica serovar Typhimurium, respectively. Evaluation of the primer sets using singleplex PCR, crosscheck PCR and multiplex PCR revealed high specificity and selectivity without interference of primers or genomic DNAs. Subsequent NGS panel analysis with six artificially contaminated food samples using those primer sets showed that all target genes were multi-detected in one reaction at 108-105 CFU of target strains. However, a few false-positive results were shown at 106-105 CFU. To validate this NGS panel analysis, three sets of qPCR analyses were independently performed with the same contaminated food samples, showing the similar specificity and selectivity for detection and identification. While this NGS panel still has some issues for detection and identification of specific foodborne pathogens, it has much more advantages, especially multiple detection and identification in one reaction, and it could be improved by further optimized NGS panel primer sets and even by application of a new real-time NGS sequencing technology. Therefore, this study suggests the efficiency and usability of NGS panel for rapid determination of origin strain in various foodborne outbreaks in one reaction.


Assuntos
Alimentos Fermentados , Listeria monocytogenes , Microbiologia de Alimentos , Sensibilidade e Especificidade , Reação em Cadeia da Polimerase Multiplex/métodos , Salmonella typhimurium/genética , Escherichia coli/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Listeria monocytogenes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...