Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 91(7): 4680-4686, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30882203

RESUMO

DT-diaphorase (DT-D) is known to mainly catalyze the two-electron reduction of quinones and nitro(so) compounds. Detection of Gram-negative bacterial outer membrane vesicles (OMVs) that contain pyrogenic lipopolysaccharides (LPSs, also called endotoxins) is required for evaluating the toxic effects of analytical samples. Here, we report that DT-D has a high dephosphorylation activity: DT-D catalyzes reductive dephosphorylation of a phosphate-containing substrate in the presence of NADH. We also report that sensitive and simple OMV detection is possible with a sandwich-type electrochemical immunosensor using DT-D and two identical LPS-binding antibodies as a catalytic label and two sandwich probes, respectively. The absorbance change in a solution containing 4-nitrophenyl phosphate indicates that dephosphorylation occurs in the presence of both DT-D and NADH. Among the three phosphate-containing substrates [4-aminophenyl phosphate, ascorbic acid phosphate, and 1-amino-2-naphthyl phosphate (ANP)] that can be converted into electrochemically active products after dephosphorylation, ANP shows the highest electrochemical signal-to-background ratio, because (i) the dephosphorylation of ANP by DT-D is fast, (ii) the electrochemical oxidation of the dephosphorylated product (1-amino-2-naphthol, AN) is rapid, even at a bare indium-tin oxide electrode, and (iii) two redox cycling processes significantly increase the electrochemical signal. The two redox cycling processes include an electrochemical-enzymatic redox cycling and an electrochemical-chemical redox cycling. The electrochemical signal in a neutral buffer (tris buffer, pH 7.5) is comparable to that in a basic buffer (tris buffer, pH 9.5). When the immunosensor is applied to the detection of OMV from Escherichia coli, the detection limit is found to be 8 ng/mL. This detection strategy is highly promising for the detection of biomaterials, including other extracellular vesicles.


Assuntos
Escherichia coli/química , Vesículas Extracelulares/química , NAD(P)H Desidrogenase (Quinona)/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Biocatálise , NAD(P)H Desidrogenase (Quinona)/química , Monoéster Fosfórico Hidrolases/química
2.
Angew Chem Int Ed Engl ; 56(51): 16262-16266, 2017 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-29105973

RESUMO

Regioselective C4-, C5-, and di-alkenylations of pyrazoles were achieved. An electrophilic Pd catalyst generated by trifluoroacetic acid (TFA) and 4,5-diazafluoren-9-one (DAF) leads to C4-alkenylation, whereas KOAc and mono-protected amino acid (MPAA) ligand Ac-Val-OH give C5-alkenylation. A combination of palladium acetate, silver carbonate, and pivalic acid affords dialkenylation products. Annulation through sequential alkenylation, thermal 6π-electrocyclization, and oxidation gives functionalized indazoles. This comprehensive strategy greatly expands the range of readily accessible pyrazole and indazole derivatives, enabling useful regiodivergent C-H functionalization of pyrazoles and other heteroaromatic systems.

3.
ACS Sens ; 2(8): 1240-1246, 2017 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-28806067

RESUMO

Biosensors for ultrasensitive point-of-care testing require dried reagents with long-term stability and a high signal-to-background ratio. Although ortho-substituted diaromatic dihydroxy and aminohydroxy compounds undergo fast redox reactions, they are not used as electrochemical signaling species because they are readily oxidized and polymerized by dissolved oxygen. In this report, stable, solid 1-amino-2-naphthyl phosphate (1A2N-P) and ammonia-borane (H3N-BH3) are respectively employed as a substrate for alkaline phosphatase (ALP) and a reductant for electrochemical-chemical (EC) redox cycling. ALP converts 1A2N-P to 1-amino-2-naphthol (1A2N), which is then employed in EC redox cycling using H3N-BH3. The oxidation and polymerization of 1A2N by dissolved oxygen is significantly prevented in the presence of H3N-BH3. The electrochemical measurement is performed without modification of indium-tin oxide (ITO) electrodes with electrocatalytic materials. For comparison, nine aromatic dihydroxy and aminohydroxy compounds, including 1A2N, are evaluated to achieve fast EC redox cycling, and four strong reductants, including H3N-BH3, are evaluated to achieve a low background level. The combination of 1A2N and H3N-BH3 allows the achievement of a very high signal-to-background ratio. When the newly developed combination is applied to the detection of creatine kinase-MB (CK-MB), the detection limit for CK-MB is ∼80 fg/mL, indicating that the combination allows ultrasensitive detection. The concentrations of CK-MB in clinical serum samples, determined using the developed system, are in good agreement with the concentrations obtained using a commercial instrument. Thus, the use of stable, solid 1A2N-P and H3N-BH3 along with bare ITO electrodes is highly promising for ultrasensitive and simple point-of-care testing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...