Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Biomed Eng ; 67(6): 1797-1805, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31634823

RESUMO

OBJECTIVE: Interventional ultrasound imaging is a prerequisite for guiding implants and treatment within the hearts and blood vessels. Due to limitations on the catheter's diameter, interventional ultrasonic transducers have side-looking structures although forward-looking imaging may provide more intuitive and real time guidance in treating diseased sites ahead of catheters. To address the issue, a magnetically actuated forward-looking interventional ultrasound imaging device is implemented for the first time. METHODS: A forward-looking catheter containing a 1 mm ring type focused 35 MHz ultrasound transducer and a micro magnet, was fabricated. For imaging, the transducer was placed at the center of four electromagnetic coils positioned on four sides of a squared acrylic housing. By modifying the magnetic field, the catheter tip could be remotely translated for sector scanning. RESULTS: The scanning angle could reach up to 3° in 1 Hz with 15 mT, while wider angles of 5° could be achieved with a higher magnetic field of 25 mT for ex-vivo imaging. The position of the transducer could be detected by monitoring the motion with a CCD camera, mimicking clinical X-ray imaging. In the wire target and tissue mimicking phantom studies, the measured hole size, spatial resolution and distance between wires by the proposed system were comparable with the values from a linear scanner. Multi-frame real time data acquisition was demonstrated via ex-vivo imaging on a pig's coronary artery. CONCLUSION/SIGNIFICANCE: The feasibility of magnetically actuated forward-looking interventional ultrasound imaging was demonstrated. The remote-controlled scanning method may allow to simplify the structures of forward-looking interventional ultrasound imaging catheters.


Assuntos
Transdutores , Ultrassonografia de Intervenção , Desenho de Equipamento , Estudos de Viabilidade , Imagens de Fantasmas
2.
ACS Omega ; 2(3): 1009-1018, 2017 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457482

RESUMO

The effects of exchange current density, Tafel slope, system resistance, electrode area, light intensity, and solar cell efficiency were systematically decoupled at the converter-assisted photovoltaic-water electrolysis system. This allows key determinants of overall efficiency to be identified. On the basis of this model, 26.5% single-junction GaAs solar cell was combined with a membrane-electrode-assembled electrolysis cell (EC) using the dc/dc converting technology. As a result, we have achieved a solar-to-hydrogen conversion efficiency of 20.6% on a prototype scale and demonstrated light intensity tracking optimization to maintain high efficiency. We believe that this study will provide design principles for combining solar cells, ECs, and new catalysts and can be generalized to other solar conversion chemical devices while minimizing their power loss during the conversion of electrical energy into fuel.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...