Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gene Expr Patterns ; 43: 119227, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34861428

RESUMO

Craniofacial development is controlled by a large number of genes, which interact with one another to form a complex gene regulatory network (GRN). Key components of GRN are signaling molecules and transcription factors. Therefore, identifying targets of core transcription factors is an important part of the overall efforts toward building a comprehensive and accurate model of GRN. LHX6 and LHX8 are transcription factors expressed in the oral mesenchyme of the first pharyngeal arch (PA1), and they are crucial regulators of palate and tooth development. Previously, we performed genome-wide transcriptional profiling and chromatin immunoprecipitation to identify target genes of LHX6 and LHX8 in PA1, and described a set of genes repressed by LHX. However, there has not been any discussion of the genes positively regulated by LHX6 and LHX8. In this paper, we revisited the above datasets to identify candidate positive targets of LHX in PA1. Focusing on those with known connections to craniofacial development, we performed RNA in situ hybridization to confirm the changes in expression in Lhx6;Lhx8 mutant. We also confirmed the binding of LHX6 to several putative enhancers near the candidate target genes. Together, we have uncovered novel connections between Lhx and other important regulators of craniofacial development, including Eya1, Barx1, Rspo2, Rspo3, and Wnt11.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Maxila/metabolismo , Palato/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
J Dev Biol ; 9(3)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34449628

RESUMO

Development of the teeth requires complex signaling interactions between the mesenchyme and the epithelium mediated by multiple pathways. For example, canonical WNT signaling is essential to many aspects of odontogenesis, and inhibiting this pathway blocks tooth development at an early stage. R-spondins (RSPOs) are secreted proteins, and they mostly augment WNT signaling. Although RSPOs have been shown to play important roles in the development of many organs, their role in tooth development is unclear. A previous study reported that mutating Rspo2 in mice led to supernumerary lower molars, while teeth forming at the normal positions showed no significant anomalies. Because multiple Rspo genes are expressed in the orofacial region, it is possible that the relatively mild phenotype of Rspo2 mutants is due to functional compensation by other RSPO proteins. We found that inactivating Rspo3 in the craniofacial mesenchyme caused the loss of lower incisors, which did not progress beyond the bud stage. A simultaneous deletion of Rspo2 and Rspo3 caused severe disruption of craniofacial development from early stages, which was accompanied with impaired development of all teeth. Together, these results indicate that Rspo3 is an important regulator of mammalian dental and craniofacial development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...