Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Small ; : e2400638, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38804126

RESUMO

The lithium deposited via the complex electrochemical heterogeneous lithium deposition reaction (LDR) process on a lithium foil-based anode (LFA) forms a high-aspect-ratio shape whenever the reaction kinetics reach its limit, threatening battery safety. Thereby, a research strategy that boosts the LDR kinetics is needed to construct a high-power and safe lithium metal anode. In this study, the kinetic limitations of the LDR process on LFA are elucidated through operando and ex situ observations using in-depth electrochemical analyses. In addition, ultra-thin (≈0.5 µm) and high modulus (≥19 GPa) double-walled carbon nanotube (DWNT) membranes with different surface properties are designed to catalyze high-safety LDRs. The oxygen-functionalized DWNT membranes introduced on the LFA top surface simultaneously induce multitudinous lithium nuclei, leading to film-like lithium deposition even at a high current density of 20 mA cm-2. More importantly, the layer-by-layer assembly of the oxygen-functionalized and pristine DWNT membranes results in different surface energies between the top and bottom surfaces, enabling selective surface LDRs underneath the high-modulus bilayer membranes. The protective LDR on the bilayer-covered LFA guarantees an invulnerable cycling process in large-area pouch cells at high current densities for more than 1000 cycles, demonstrating the practicability of LFA in a conventional liquid electrolyte system.

2.
Nat Commun ; 15(1): 2281, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480721

RESUMO

Solid state single-photon sources with high brightness and long coherence time are promising qubit candidates for modern quantum technology. To prevent decoherence processes and preserve the integrity of the qubits, decoupling the emitters from their surrounding environment is essential. To this end, interfacing single photon emitters (SPEs) with high-finesse cavities is required, especially in the strong coupling regime, when the interaction between emitters can be mediated by cavity fields. However, achieving strong coupling at elevated temperatures is challenging due to competing incoherent processes. Here, we address this long-standing problem by using a quantum system, which comprises a class of SPEs in hexagonal boron nitride and a dielectric cavity based on bound states in the continuum (BIC). We experimentally demonstrate, at room temperature, strong coupling of the system with a large Rabi splitting of ~4 meV thanks to the combination of the narrow linewidth and large oscillator strength of the emitters and the efficient photon trapping of the BIC cavity. Our findings unveil opportunities to advance the fundamental understanding of quantum dynamical system in strong coupling regime and to realise scalable quantum devices capable of operating at room temperature.

3.
ACS Photonics ; 11(3): 816-865, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38550347

RESUMO

Metasurfaces have recently risen to prominence in optical research, providing unique functionalities that can be used for imaging, beam forming, holography, polarimetry, and many more, while keeping device dimensions small. Despite the fact that a vast range of basic metasurface designs has already been thoroughly studied in the literature, the number of metasurface-related papers is still growing at a rapid pace, as metasurface research is now spreading to adjacent fields, including computational imaging, augmented and virtual reality, automotive, display, biosensing, nonlinear, quantum and topological optics, optical computing, and more. At the same time, the ability of metasurfaces to perform optical functions in much more compact optical systems has triggered strong and constantly growing interest from various industries that greatly benefit from the availability of miniaturized, highly functional, and efficient optical components that can be integrated in optoelectronic systems at low cost. This creates a truly unique opportunity for the field of metasurfaces to make both a scientific and an industrial impact. The goal of this Roadmap is to mark this "golden age" of metasurface research and define future directions to encourage scientists and engineers to drive research and development in the field of metasurfaces toward both scientific excellence and broad industrial adoption.

4.
Adv Sci (Weinh) ; 11(13): e2303929, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38093513

RESUMO

Freeform nanostructures have the potential to support complex resonances and their interactions, which are crucial for achieving desired spectral responses. However, the design optimization of such structures is nontrivial and computationally intensive. Furthermore, the current "black box" design approaches for freeform nanostructures often neglect the underlying physics. Here, a hybrid data-efficient neural optimizer for resonant nanostructures by combining a reinforcement learning algorithm and Powell's local optimization technique is presented. As a case study, silicon nanostructures with a highly-saturated red color are designed and experimentally demonstrated. Specifically, color coordinates of (0.677, 0.304) in the International Commission on Illumination (CIE) chromaticity diagram - close to the ideal Schrödinger's red, with polarization independence, high reflectance (>85%), and a large viewing angle (i.e., up to ± 25°) is achieved. The remarkable performance is attributed to underlying generalized multipolar interferences within each nanostructure rather than the collective array effects. Based on that, pixel size down to ≈400 nm, corresponding to a printing resolution of 65000 pixels per inch is demonstrated. Moreover, the proposed design model requires only ≈300 iterations to effectively search a thirteen-dimensional (13D) design space - an order of magnitude more efficient than the previously reported approaches. The work significantly extends the free-form optical design toolbox for high-performance flat-optical components and metadevices.

5.
Nano Lett ; 23(24): 11802-11808, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38085099

RESUMO

We present a dual-resonance nanostructure made of a titanium dioxide (TiO2) subwavelength grating to enhance the color downconversion efficiency of CdxZn1-xSeyS1-y colloidal quantum dots (QDs) emitting at ∼530 nm when excited with a blue light at ∼460 nm. A large mode volume can be created within the QD layer by the hybridization of the grating resonances and waveguide modes, resulting in large absorption and emission enhancements. Particularly, we achieved polarized light emission with a maximum photoluminescence enhancement of ∼140 times at a specific angular direction and a total enhancement of ∼34 times within a 0.55 numerical aperture (NA) of the collecting objective. The enhancement encompasses absorption, Purcell and outcoupling enhancements. We achieved a total absorption of 35% for green QDs with a remarkably thin color conversion layer of ∼400 nm. This work provides a guideline for designing large-volume cavities for absorption/fluorescence enhancement in microLED display, detector, or photovoltaic applications.

6.
PLoS One ; 18(9): e0291020, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37656687

RESUMO

Various studies have been conducted to measure financial inclusion at the country level. However, measuring financial inclusion at the household level has largely been neglected in the existing literature, particularly for emerging markets such as Vietnam. This study constructs an index of financial inclusion at the household level using the Vietnam Household Living Standard Surveys (VHLSS) in 2014, 2016, and 2018. We also identify the determinants of financial inclusion from the perspective of Vietnamese households. Our study also utilizes an ordered logit model to examine the effects of the determinants on each level of financial inclusion. Our empirical results reveal three key determinants, including (i) total income per household, (ii) relative income representing the difference between the average income of the province that the household currently lives in and the total income of this household, and (iii) the distance from the household to the nearest bank branch, are crucial factors driving the financial inclusion. While the total income per household positively enhances financial inclusion, relative income appears to reduce the degree of financial inclusion. Besides, distance to the nearest bank branch poses another challenge in achieving the financial inclusion goals in Vietnam in the future.


Assuntos
Renda , Vietnã , Modelos Logísticos
7.
ACS Nano ; 17(20): 19981-19992, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37610378

RESUMO

The strength of electrostatic interactions (EIs) between electrons and holes within semiconductor nanocrystals profoundly affects the performance of their optoelectronic systems, and different optoelectronic devices demand distinct EI strength of the active medium. However, achieving a broad range and fine-tuning of the EI strength for specific optoelectronic applications is a daunting challenge, especially in quasi two-dimensional core-shell semiconductor nanoplatelets (NPLs), as the epitaxial growth of the inorganic shell along the direction of the thickness that solely contributes to the quantum confined effect significantly undermines the strength of the EI. Herein we propose and demonstrate a doubly gradient (DG) core-shell architecture of semiconductor NPLs for on-demand tailoring of the EI strength by controlling the localized exciton concentration via in-plane architectural modulation, demonstrated by a wide tuning of radiative recombination rate and exciton binding energy. Moreover, these exciton-concentration-engineered DG NPLs also exhibit a near-unity quantum yield, high photo- and thermal stability, and considerably suppressed self-absorption. As proof-of-concept demonstrations, highly efficient color converters and high-performance light-emitting diodes (external quantum efficiency: 16.9%, maximum luminance: 43,000 cd/m2) have been achieved based on the DG NPLs. This work thus provides insights into the development of high-performance colloidal optoelectronic device applications.

8.
Nano Lett ; 23(14): 6645-6650, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37418703

RESUMO

Light-matter interactions in optical cavities underpin many applications of integrated quantum photonics. Among various solid-state platforms, hexagonal boron nitride (hBN) is gaining considerable interest as a compelling van der Waals host of quantum emitters. However, progress to date has been limited by an inability to engineer simultaneously an hBN emitter and a narrow-band photonic resonator at a predetermined wavelength. Here, we overcome this problem and demonstrate deterministic fabrication of hBN nanobeam photonic crystal cavities with high quality factors over a broad spectral range (∼400 to 850 nm). We then fabricate a monolithic, coupled cavity-emitter system designed for a blue quantum emitter that has an emission wavelength of 436 nm and is induced deterministically by electron beam irradiation of the cavity hotspot. Our work constitutes a promising path to scalable on-chip quantum photonics and paves the way to quantum networks based on van der Waals materials.

9.
Heliyon ; 9(6): e17418, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37366521

RESUMO

It is essential to achieve herd immunity in order to control the COVID-19 pandemic, and this requires a high level of vaccination rate. Despite the importance of vaccination, hesitancy and unwillingness in receiving the COVID-19 vaccine still exists. It is therefore crucial to comprehend the intentions of adults regarding COVID-19 vaccination, which is beneficial for establishing community immunity and an efficient future pandemic response. An online survey was administered to 2722 adults in Vietnam. Cronbach's alpha, exploratory factor analysis (EFA), and confirmatory factor analysis (CFA) were used to test the reliability and validity of the developed scales. Then, structural equational modeling (SEM) was employed to test correlations. This study found that favorable attitudes toward COVID-19 vaccines played the most important role in shaping adults' intention to receive these vaccines, followed by perceived behavioral control, perceived benefits of COVID-19 vaccines, and subjective norms. Concurrently, all three core dimensions of the theory of planned behavior mediated the link between the perceived benefits of COVID-19 vaccines and the intention to receive them. Also, there were significant differences between males and females in the way they formed this intention. The findings of this study offer valuable guidance for practitioners on how to encourage adults to receive COVID-19 vaccinations, as well as how to limit the transmission of the COVID-19 virus.

10.
Nano Lett ; 23(10): 4431-4438, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37129264

RESUMO

We present a new approach to achieving strong coupling between electrically injected excitons and photonic bound states in the continuum of a dielectric metasurface. Here a high-finesse metasurface cavity is monolithically patterned in the channel of a perovskite light-emitting transistor to induce a large Rabi splitting of ∼200 meV and more than 50-fold enhancement of the polaritonic emission compared to the intrinsic excitonic emission of the perovskite film. Moreover, the directionality of polaritonic electroluminescence can be dynamically tuned by varying the source-drain bias, which induces an asymmetric distribution of exciton population within the transistor channel. We argue that this approach provides a new platform to study strong light-matter interactions in dispersion engineered photonic cavities under electrical injection and paves the way to solution-processed electrically pumped polariton lasers.

11.
ACS Nano ; 17(3): 2725-2736, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36661346

RESUMO

All-optical nanothermometry has become a powerful, remote tool for measuring nanoscale temperatures in applications ranging from medicine to nano-optics and solid-state nanodevices. The key features of any candidate nanothermometer are brightness, sensitivity, and (signal, spatial, and temporal) resolution. Here, we demonstrate a real-time, diamond-based nanothermometry technique with excellent sensitivity (1.8% K-1) and record-high resolution (5.8 × 104 K Hz-1/2 W cm-2) based on codoped nanodiamonds. The distinct performance of our approach stems from two factors: (i) temperature sensors─nanodiamonds cohosting two group IV color centers─engineered to emit spectrally separated Stokes and anti-Stokes fluorescence signals under excitation by a single laser source and (ii) a parallel detection scheme based on filtering optics and high-sensitivity photon counters for fast readout. We demonstrate the performance of our method by monitoring temporal changes in the local temperature of a microcircuit and a MoTe2 field-effect transistor. Our work advances a powerful, alternative strategy for time-resolved temperature monitoring and mapping of micro-/nanoscale devices such as microfluidic channels, nanophotonic circuits, and nanoelectronic devices, as well as complex biological environments such as tissues and cells.

12.
Adv Mater ; 35(1): e2207317, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36308036

RESUMO

Emerging immersive visual communication technologies require light sources with complex functionality for dynamic control of polarization, directivity, wavefront, spectrum, and intensity of light. Currently, this is mostly achieved by free space bulk optic elements, limiting the adoption of these technologies. Flat optics based on artificially structured metasurfaces that operate at the sub-wavelength scale are a viable solution, however, their integration into electrically driven devices remains challenging. Here, a radically new approach to monolithic integration of a dielectric metasurface into a perovskite light-emitting transistor is demonstrated. It is shown that nanogratings directly structured on top of the transistor channel yield an 8-fold increase of electroluminescence intensity and dynamic tunability of polarization. This new light-emitting metatransistor device concept opens unlimited opportunities for light management strategies based on metasurface design and integration.

13.
Nano Lett ; 22(22): 8917-8924, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36354246

RESUMO

Reconfigurable metamaterials require constituent nanostructures to demonstrate switching of shapes with external stimuli. Yet, a longstanding challenge is in overcoming stiction caused by van der Waals forces in the deformed configuration, which impedes shape recovery. Here, we introduce stiff shape memory polymers. This designer material has a storage modulus of ∼5.2 GPa at room temperature and ∼90 MPa in the rubbery state at 150 °C, 1 order of magnitude higher than those in previous reports. Nanopillars with diameters of ∼400 nm and an aspect ratio as high as ∼10 were printed by two-photon lithography. Experimentally, we observe shape recovery as collapsed and touching structures overcome stiction to stand back up. We develop a theoretical model to explain the recoverability of these sub-micrometer structures. Reconfigurable structural color prints with a resolution of 21150 dots per inch and holograms are demonstrated, indicating potential applications of the stiff shape memory polymers in high-resolution reconfigurable nanophotonics.


Assuntos
Nanoestruturas , Materiais Inteligentes , Polímeros/química , Impressão , Nanoestruturas/química , Fótons
14.
Nano Lett ; 22(18): 7432-7440, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36069429

RESUMO

It has been long known that low molecular weight resists can achieve a very high resolution, theoretically close to the probe diameter of the electron beam lithography (EBL) system. Despite technological improvements in EBL systems, the advances in resists have lagged behind. Here we demonstrate that a low-molecular-mass single-source precursor resist (based on cadmium(II) ethylxanthate complexed with pyridine) is capable of a achieving resolution (4 nm) that closely matches the measured probe diameter (∼3.8 nm). Energetic electrons enable the top-down radiolysis of the resist, while they provide the energy to construct the functional material from the bottom-up─unit cell by unit cell. Since this occurs only within the volume of resist exposed to primary electrons, the minimum size of the patterned features is close to the beam diameter. We speculate that angstrom-scale patterning of functional materials is possible with single-source precursor resists using an aberration-corrected electron beam writer with a spot size of ∼1 Å.

15.
Nanoscale ; 14(40): 14950-14955, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36069362

RESUMO

Spin-dependent optical transitions are attractive for a plethora of applications in quantum technologies. Here we report on utilization of high quality ring resonators fabricated from TiO2 to enhance the emission from negatively charged boron vacancies (VB-) in hexagonal Boron Nitride. We show that the emission from these defects can efficiently couple into the whispering gallery modes of the ring resonators. Optically coupled VB- showed photoluminescence contrast in optically detected magnetic resonance signals from the hybrid coupled devices. Our results demonstrate a practical method for integration of spin defects in 2D materials with dielectric resonators which is a promising platform for quantum technologies.

16.
Nano Lett ; 22(15): 6141-6148, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35867018

RESUMO

Resonant metasurfaces provide a unique platform for enhancing multiwave nonlinear interactions. However, the difficulties over mode matching and material transparency place significant challenges in the enhancement of these multiwave processes. Here we demonstrate efficient nonlinear sum-frequency generation (SFG) in multiresonant GaP metasurfaces based on guided-wave bound-state in the continuum resonances. The excitation of the metasurface by two near-infrared input beams generates strong SFG in the visible spectrum with a conversion efficiency of 2.5 × 10-4 W-1, 2 orders of magnitude higher than the one reported in Mie-type resonant metasurfaces. In addition, we demonstrate the nontrivial polarization dependence on the SFG process. In contrast to harmonic generation, the SFG process is enhanced when using nonparallel polarized input-beams. Importantly, by varying the input pump beam polarization it is possible to direct the SFG emission to different diffraction orders, thereby opening up new opportunities for nonlinear light sources and infrared to visible light conversion.

17.
PeerJ Comput Sci ; 8: e950, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35494837

RESUMO

Undeniably, Internet of Things (IoT) devices are gradually getting better over time; and IoT-based systems play a significant role in our lives. The pervasiveness of the new essential service models is expanding, and includes self-driving cars, smart homes, smart cities, as well as promoting the development of some traditional fields such as agriculture, healthcare, and transportation; the development of IoT devices has not shown any sign of cooling down. On the one hand, several studies are coming up with many scenarios for IoT platforms, but some critical issues related to performance, speed, power consumption, availability, security, and scalability are not yet fully resolved. On the other hand, IoT devices are manufactured and developed by different organizations and individuals; hence, there is no unified standard (uniformity of IoT devices), i.e., sending and receiving messages among them and between them and the upper layer (e.g., edge devices). To address these issues, this paper proposes an IoT Platform called BMDD (Broker-less and Microservice architecture, Decentralized identity, and Dynamic transmission messages) that has a combination of two architectural models, including broker-less and microservices, with cutting-edge technologies such as decentralized identity and dynamic message transmission. The main contributions of this article are five-fold, including: (i) proposing broker-less and microservice for the IoT platform which can reduce single failure point of brokering architecture, easy to scale out and improve failover; (ii) providing a decentralized authentication mechanism which is suitable for IoT devices attribute (i.e., mobility, distributed); (iii) applying the Role-Based Access Control (RBAC) model for the authorization process; (iv) exploiting the gRPC protocol combined with the Kafka message queue enhances transmission rates, transmission reliability, and reduces power consumption in comparison with MQTT protocol; and (v) developing a dynamic message transmission mechanism that helps users communicate with any device, regardless of the manufacturer, since it provides very high homogeneity.

18.
Light Sci Appl ; 11(1): 20, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35058424

RESUMO

Bound-states-in-the-continuum (BIC) is an emerging concept in nanophotonics with potential impact in applications, such as hyperspectral imaging, mirror-less lasing, and nonlinear harmonic generation. As true BIC modes are non-radiative, they cannot be excited by using propagating light to investigate their optical characteristics. In this paper, for the 1st time, we map out the strong near-field localization of the true BIC resonance on arrays of silicon nanoantennas, via electron energy loss spectroscopy with a sub-1-nm electron beam. By systematically breaking the designed antenna symmetry, emissive quasi-BIC resonances become visible. This gives a unique experimental tool to determine the coherent interaction length, which we show to require at least six neighboring antenna elements. More importantly, we demonstrate that quasi-BIC resonances are able to enhance localized light emission via the Purcell effect by at least 60 times, as compared to unpatterned silicon. This work is expected to enable practical applications of designed, ultra-compact BIC antennas such as for the controlled, localized excitation of quantum emitters.

19.
Adv Sci (Weinh) ; 9(6): e2104145, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34939362

RESUMO

Despite the development of multidimensional state-of-the-art electrode materials for constructing better lithium metal anodes (LMAs), the key factors influencing the electrochemical performance of LMAs are still poorly understood. Herein, it is demonstrated that the local lithium ion concentration at the interface between the electrode and electrolyte exerts significant influence on the electrochemical performance of LMAs. The local ion concentration is multiplied by introducing pseudocapacitive nanocarbons (PNCs) containing numerous heteroatoms, because PNCs can store large numbers of lithium ions in a pseudocapacitive manner, and promote the formation of an electrochemical double layer. The high interfacial lithium ion concentration induces the formation of lithium-rich inorganic solid-electrolyte-interface layers with high ionic conductivities, and facilitates sustainable and stable supplies of lithium ion charge carriers on the overall active surfaces of the PNCs. Accordingly, the PNC-induced LMA exhibits high Coulombic efficiencies, high rate capabilities, and stable cycling performance.

20.
Front Public Health ; 9: 672732, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34540779

RESUMO

Emerging from early of 2020, the COVID-19 pandemic has become one of the most serious health crisis globally. In response to such threat, a wide range of digital health applications has been deployed in Vietnam to strengthen surveillance, risk communication, diagnosis, and treatment of COVID-19. Digital health has brought enormous benefits to the fight against COVID-19, however, numerous constrains in digital health application remain. Lack of strong governance of digital health development and deployment; insufficient infrastructure and staff capacity for digital health application are among the main drawbacks. Despite several outstanding problems, digital health is expected to contribute to reducing the spread, improving the effectiveness of pandemic control, and adding to the dramatic transformation of the health system the post-COVID era.


Assuntos
COVID-19 , Pandemias , Humanos , SARS-CoV-2 , Vietnã/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...