Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomol Ther (Seoul) ; 26(4): 343-349, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29929351

RESUMO

Although drugs such as barbiturates and benzodiazepines are often used for the treatment of insomnia, they are associated with various side effects such as habituations, tolerance and addiction. Alternatively, natural products with minimal unwanted effects have been preferred for the treatment of acute and/or mild insomnia, with additional benefits of overall health-promotion. Basic and clinical researches on the mechanisms of action of natural products have been carried out so far in insomnia treatments. Recent studies have been focusing on diverse chemical components available in natural products, with an interest of developing drugs that can improve sleep duration and quality. In the last 15 years, our co-workers have been actively looking for candidate substances from natural products that can relieve insomnia. This review is, therefore, intended to bring pharmacological data regarding to the effects of natural products on sleep duration and quality, mainly through the activation of GABAA receptors. It is imperative that phytochemicals will provide useful information during electroencephalography (EEG) analysis and serve as an alternative medications for insomnia patients who are reluctant to use conventional drugs.

2.
Biomol Ther (Seoul) ; 25(6): 586-592, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29081090

RESUMO

Sinomenium acutum has been long used in the preparations of traditional medicine in Japan, China and Korea for the treatment of various disorders including rheumatism, fever, pulmonary diseases and mood disorders. Recently, it was reported that Sinomenium acutum, has sedative and anxiolytic effects mediated by GABA-ergic systems. These experiments were performed to investigate whether sinomenine (SIN), an alkaloid derived from Sinomenium acutum enhances pentobarbital-induced sleep via γ-aminobutyric acid (GABA)-ergic systems, and modulates sleep architecture in mice. Oral administration of SIN (40 mg/kg) markedly reduced spontaneous locomotor activity, similar to diazepam (a benzodiazepine agonist) in mice. SIN shortened sleep latency, and increased total sleep time in a dose-dependent manner when co-administrated with pentobarbital (42 mg/kg, i.p.). SIN also increased the number of sleeping mice and total sleep time by concomitant administration with the sub-hypnotic dosage of pentobarbital (28 mg/kg, i.p.). SIN reduced the number of sleep-wake cycles, and increased total sleep time and non-rapid eye movement (NREM) sleep. In addition, SIN also increased chloride influx in the primary cultured hypothalamic neuronal cells. Furthermore, protein overexpression of glutamic acid decarboxylase (GAD65/67) and GABAA receptor subunits by western blot were found, being activated by SIN. In conclusion, SIN augments pentobarbital-induced sleeping behaviors through GABAA-ergic systems, and increased NREM sleep. It could be a candidate for the treatment of insomnia.

3.
Korean J Physiol Pharmacol ; 21(1): 27-36, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28066138

RESUMO

Angelicae Gigantis Radix (AGR, Angelica gigas) has been used for a long time as a traditional folk medicine in Korea and oriental countries. Decursinol angelate (DCA) is structurally isomeric decursin, one of the major components of AGR. This study was performed to confirm whether DCA augments pentobarbital-induced sleeping behaviors via the activation of GABAA-ergic systems in animals. Oral administration of DCA (10, 25 and 50 mg/kg) markedly suppressed spontaneous locomotor activity. DCA also prolonged sleeping time, and decreased the sleep latency by pentobarbital (42 mg/kg), in a dose-dependent manner, similar to muscimol, both at the hypnotic (42 mg/kg) and sub-hypnotic (28 mg/kg) dosages. Especially, DCA increased the number of sleeping animals in the sub-hypnotic dosage. DCA (50 mg/kg, p.o.) itself modulated sleep architectures; DCA reduced the counts of sleep/wake cycles. At the same time, DCA increased total sleep time, but not non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. In the molecular experiments. DCA (0.001, 0.01 and 0.1 µg/ml) increased intracellular Cl- influx level in hypothalamic primary cultured neuronal cells of rats. In addition, DCA increased the protein expression of glutamic acid decarboxylase (GAD65/67) and GABAA receptors subtypes. Taken together, these results suggest that DCA potentiates pentobarbital-induced sleeping behaviors through the activation of GABAA-ergic systems, and can be useful in the treatment of insomnia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...