Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 384(6695): 584-590, 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38696583

RESUMO

Meningomyelocele is one of the most severe forms of neural tube defects (NTDs) and the most frequent structural birth defect of the central nervous system. We assembled the Spina Bifida Sequencing Consortium to identify causes. Exome and genome sequencing of 715 parent-offspring trios identified six patients with chromosomal 22q11.2 deletions, suggesting a 23-fold increased risk compared with the general population. Furthermore, analysis of a separate 22q11.2 deletion cohort suggested a 12- to 15-fold increased NTD risk of meningomyelocele. The loss of Crkl, one of several neural tube-expressed genes within the minimal deletion interval, was sufficient to replicate NTDs in mice, where both penetrance and expressivity were exacerbated by maternal folate deficiency. Thus, the common 22q11.2 deletion confers substantial meningomyelocele risk, which is partially alleviated by folate supplementation.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 22 , Meningomielocele , Animais , Feminino , Humanos , Masculino , Camundongos , Cromossomos Humanos Par 22/genética , Síndrome de DiGeorge/genética , Sequenciamento do Exoma , Ácido Fólico/administração & dosagem , Deficiência de Ácido Fólico/complicações , Deficiência de Ácido Fólico/genética , Meningomielocele/epidemiologia , Meningomielocele/genética , Penetrância , Disrafismo Espinal/genética , Risco , Proteínas Adaptadoras de Transdução de Sinal/genética
2.
Nat Methods ; 20(12): 2058-2067, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37828153

RESUMO

Rapid advances in sequencing and analysis technologies have enabled the accurate detection of diverse forms of genomic variants represented as heterozygous, homozygous and mosaic mutations. However, the best practices for mosaic variant calling remain disorganized owing to the technical and conceptual difficulties faced in evaluation. Here we present our benchmark of 11 feasible mosaic variant detection approaches based on a systematically designed whole-exome-level reference standard that mimics mosaic samples, supported by 354,258 control positive mosaic single-nucleotide variants and insertion-deletion mutations and 33,111,725 control negatives. We identified not only the best practice for mosaic variant detection but also the condition-dependent strengths and weaknesses of the current methods. Furthermore, feature-level evaluation and their combinatorial usage across multiple algorithms direct the way for immediate to prolonged improvements in mosaic variant detection. Our results will guide researchers in selecting suitable calling algorithms and suggest future strategies for developers.


Assuntos
Benchmarking , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Software , Algoritmos , Mutação , Polimorfismo de Nucleotídeo Único
3.
Proc Natl Acad Sci U S A ; 120(4): e2209983120, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36669109

RESUMO

TMEM161B encodes an evolutionarily conserved widely expressed novel 8-pass transmembrane protein of unknown function in human. Here we identify TMEM161B homozygous hypomorphic missense variants in our recessive polymicrogyria (PMG) cohort. Patients carrying TMEM161B mutations exhibit striking neocortical PMG and intellectual disability. Tmem161b knockout mice fail to develop midline hemispheric cleavage, whereas knock-in of patient mutations and patient-derived brain organoids show defects in apical cell polarity and radial glial scaffolding. We found that TMEM161B modulates actin filopodia, functioning upstream of the Rho-GTPase CDC42. Our data link TMEM161B with human PMG, likely regulating radial glia apical polarity during neocortical development.


Assuntos
Neocórtex , Animais , Humanos , Camundongos , Células Ependimogliais , Camundongos Knockout
4.
PLoS Genet ; 18(9): e1010404, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36121845

RESUMO

Most somatic mutations that arise during normal development are present at low levels in single or multiple tissues depending on the developmental stage and affected organs. However, the effect of human developmental stages or mutations of different organs on the features of somatic mutations is still unclear. Here, we performed a systemic and comprehensive analysis of low-level somatic mutations using deep whole-exome sequencing (average read depth ~500×) of 498 multiple organ tissues with matched controls from 190 individuals. Our results showed that early clone-forming mutations shared between multiple organs were lower in number but showed higher allele frequencies than late clone-forming mutations [0.54 vs. 5.83 variants per individual; 6.17% vs. 1.5% variant allele frequency (VAF)] along with less nonsynonymous mutations and lower functional impacts. Additionally, early and late clone-forming mutations had unique mutational signatures that were distinct from mutations that originated from tumors. Compared with early clone-forming mutations that showed a clock-like signature across all organs or tissues studied, late clone-forming mutations showed organ, tissue, and cell-type specificity in the mutation counts, VAFs, and mutational signatures. In particular, analysis of brain somatic mutations showed a bimodal occurrence and temporal-lobe-specific signature. These findings provide new insights into the features of somatic mosaicism that are dependent on developmental stage and brain regions.


Assuntos
Mosaicismo , Neoplasias , Frequência do Gene , Humanos , Mutação , Neoplasias/genética , Sequenciamento do Exoma
5.
Sci Data ; 9(1): 35, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115554

RESUMO

Detection of somatic mosaicism in non-proliferative cells is a new challenge in genome research, however, the accuracy of current detection strategies remains uncertain due to the lack of a ground truth. Herein, we sought to present a set of ultra-deep sequenced WES data based on reference standards generated by cell line mixtures, providing a total of 386,613 mosaic single-nucleotide variants (SNVs) and insertion-deletion mutations (INDELs) with variant allele frequencies (VAFs) ranging from 0.5% to 56%, as well as 35,113,417 non-variant and 19,936 germline variant sites as a negative control. The whole reference standard set mimics the cumulative aspect of mosaic variant acquisition such as in the early developmental stage owing to the progressive mixing of cell lines with established genotypes, ultimately unveiling 741 possible inter-sample relationships with respect to variant sharing and asymmetry in VAFs. We expect that our reference data will be essential for optimizing the current use of mosaic variant detection strategies and for developing algorithms to enable future improvements.


Assuntos
Polimorfismo de Nucleotídeo Único , Padrões de Referência , Animais , Linhagem Celular , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação INDEL
6.
Nat Commun ; 11(1): 3616, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32680987

RESUMO

Genomic and precision medicine research has afforded notable advances in human cancer treatment, yet applicability to other species remains uncertain. Through whole-exome and transcriptome analyses of 191 spontaneous canine mammary tumors (CMTs) that exhibit the archetypal features of human breast cancers, we found a striking resemblance of genomic characteristics including frequent PIK3CA mutations (43.1%), aberrations of the PI3K-Akt pathway (61.7%), and key genes involved in cancer initiation and progression. We also identified three gene expression-based CMT subtypes, one of which segregated with basal-like human breast cancer subtypes with activated epithelial-to-mesenchymal transition, low claudin expression, and unfavorable disease prognosis. A relative lack of ERBB2 amplification and Her2-enrichment subtype in CMT denoted species-specific molecular mechanisms. Taken together, our results elucidate cross-species oncogenic signatures for a better understanding of universal and context-dependent mechanisms in breast cancer development and provide a basis for precision diagnostics and therapeutics for domestic dogs.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Carcinogênese/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Mamárias Animais/genética , Animais , Mama/patologia , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Classe I de Fosfatidilinositol 3-Quinases/genética , Estudos de Coortes , Variações do Número de Cópias de DNA , Análise Mutacional de DNA , Conjuntos de Dados como Assunto , Cães , Transição Epitelial-Mesenquimal , Feminino , Humanos , Glândulas Mamárias Animais/patologia , Glândulas Mamárias Animais/cirurgia , Neoplasias Mamárias Animais/mortalidade , Neoplasias Mamárias Animais/patologia , Neoplasias Mamárias Animais/cirurgia , Mutação , Prognóstico , RNA-Seq , Especificidade da Espécie , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...