Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38662960

RESUMO

Tumor heterogeneity requires development of an anticancer system equipped with both chemical and physical therapeutics to eradicate cancer exhibiting drug resistance and clonal evolution into diverse tumor cells. Assortment of various toxic components into one platform without compromising their individual toxic activity remains a formidable task. Herein, a novel drug delivery system (DDS) exerting potent cytotoxicity toward cancer cells was fabricated with gold nanoparticles (AuNPs) coated with an innocuous self-assembly protein of κ-casein (κC). Pickering emulsions of the κC-AuNP conjugates in the presence of chloroform inside led to the κC-AuNP microcapsules being stabilized via robust ß-sheet formation between κC molecules located on the single-layered shell made of κC-AuNPs. Phase change material (PCM) comprising a eutectic mixture of lauric acid and myristic acid with the melting point of 43 °C was encapsulated in the presence of a hydrophilic anticancer drug of doxorubicin (Dox), in which the PCM has played multiple functions such as drug-holding matrix and thermoresponsive gating material for drug release. Once liberated with the heat generated by the AuNPs upon a near-infrared (NIR) irradiation at 808 nm, the PCM by itself exhibited not only chemical cytotoxicity but also physical toxic effects such as membrane destabilization of the cells and a possible cellular fixative effect toward cancer cells by the solidified PCM at body temperature. Moreover, the PCM was shown to facilitate the intranuclear localization of Dox. As a result, the DDS comprising κC-AuNP microcapsules containing Dox-loaded PCM was demonstrated to show a powerful anticancer effect upon the NIR irradiation, which unleashed several toxic agents such as Dox, PCM, heat-generating AuNPs, and tissue-immobilizing solidified PCM. Therefore, the κC-AuNP microcapsules would serve as an anticancer system into which diverse chemical and physical therapeutic agents could be combined to effectively remove the heterogeneous and drug resistant cancer cells.

2.
Acta Biomater ; 145: 52-61, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35421616

RESUMO

Due to their mechanical robustness, biocompatibility, and nanoscale size, amyloid fibrils (AFs) have been considered as a potential nanomaterial for biological applications. Unfortunately, however, AFs are usually not fully extended because of their pre-mature breakage, which hampers their use to generate biocompatible suprastructures, although the amounts of AFs could be amplified via their self-propagation property. Here, we have demonstrated the full extension of AFs of α-synuclein (αS) by introducing a cysteine residue to its C-terminus which prevents the shear-induced fragmentation of AFs via site-directed disulfide bond formation on the exposed surface of AFs. These heat- and cold-resistant elongated AFs were entangled into self-healable hydrogels through a mild disulfide-exchange process in the presence of tris(2-carboxyethyl) phosphine, which subsequently developed into dye-absorbing aerogels upon freeze-drying without collapsing the three-dimensional internal fibrillar network. The resulting αS aerogel with high porosity and increased surface area was shown to be capable of absorbing both hydrophilic and hydrophobic substances. In addition, the aerogel was further engineered with 8-arm polyethylene glycol containing a sulfhydryl group to increase its drug loading capacity and protease susceptibility for drug unloading. The elongated AFs, therefore, have been suggested to play a pivotal component for the development of bio-nano-matrix for diverse biological applications including drug delivery, tissue engineering, and environmental remediation. STATEMENT OF SIGNIFICANCE: Due to accurate protein self-assembly process, α-synuclein forms an amyloid fibril which are the major component of Lewy bodies. In general, α-synuclein amyloid fibrils break under thermal fluctuations as these nanofibrils elongate to reach certain length. In this study, we have demonstrated the full extension of α-synuclein amyloid fibrils by introducing a cysteine residue to its C-terminus by forming site-directed disulfide bonds on the exposed surface of amyloid fibrils for the first time. The resulting elongated amyloid fibrils were mechanically robust and stable. By using elongated amyloid fibrils, we have made self-healable amyloid fibril hydrogel and dye-absorbing aerogel.


Assuntos
Amiloide , alfa-Sinucleína , Amiloide/química , Cisteína , Dissulfetos , Hidrogéis , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo
3.
ACS Appl Bio Mater ; 4(2): 1863-1875, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35014532

RESUMO

Development of sensing elements for controllable soft materials is crucial to improve their responsiveness toward remotely provided external stimuli. Magnetic nanoparticles (MNPs) and gold nanoparticles (AuNPs) have been coassembled into a flexible free-floating 2D film to produce a shape deformable mobile structure in the presence of magnetic field and light irradiation by employing a self-assembly protein of α-synuclein (αS). αS was demonstrated to be essential for the preparation of a multisensory system because the intrinsically disordered protein led to a complete dispersion of MNPs to an average size of 10 nm in aqueous solution, pH-dependent closely packed single layer adsorption of αS-MNPs, and α-helix-mediated free-floating MNP monolayer film formation upon dissolving the underlying polycarbonate substrate with chloroform. As AuNPs were incorporated into the assorted hybrid film in the presence of MNPs, however, the ß-sheet component became prominent. By placing the assorted film between a spin-coated thin layer of thermoresponsive P(AAc-co-NIPAAm) hydrogel comprising acrylic acid and N-isopropylacrylamide and a passive layer of silicone elastomer, the resulting triply structure exhibited not only magnet-induced locomotion but also shape deformation due to asymmetric contraction of the sandwiching two layers caused by the heat generated by AuNPs upon near IR irradiation. In fact, two adjoining planar layers of another triply structure were shown to form a three-dimensional lotus flower with the light. This multisensory system is suggested to be further functionalized by modifying the αS molecules and incorporating additional nanoparticles to react to diverse stimuli, which would make the system be utilized in the areas of not only soft robotics but also foldable electronics, high-performance sensors/actuators, and medical/wearable applications.


Assuntos
Materiais Biocompatíveis/síntese química , Ouro/química , Nanopartículas de Magnetita/química , Nanopartículas Metálicas/química , alfa-Sinucleína/síntese química , Materiais Biocompatíveis/química , Humanos , Concentração de Íons de Hidrogênio , Teste de Materiais , Tamanho da Partícula , alfa-Sinucleína/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...