Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Mol Cancer Ther ; 14(12): 2762-72, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26438154

RESUMO

Inhibition of the IGF1R, INSRA, and INSRB receptor tyrosine kinases represents an attractive approach of pharmacologic intervention in cancer, owing to the roles of the IGF1R and INSRA in promoting cell proliferation and survival. However, the central role of the INSRB isoform in glucose homeostasis suggests that prolonged inhibition of this kinase could result in metabolic toxicity. We describe here the profile of the novel compound BI 885578, a potent and selective ATP-competitive IGF1R/INSR tyrosine kinase inhibitor distinguished by rapid intestinal absorption and a short in vivo half-life as a result of rapid metabolic clearance. BI 885578, administered daily per os, displayed an acceptable tolerability profile in mice at doses that significantly reduced the growth of xenografted human GEO and CL-14 colon carcinoma tumors. We found that treatment with BI 885578 is accompanied by increases in circulating glucose and insulin levels, which in turn leads to compensatory hyperphosphorylation of muscle INSRs and subsequent normalization of blood glucose within a few hours. In contrast, the normalization of IGF1R and INSR phosphorylation in GEO tumors occurs at a much slower rate. In accordance with this, BI 885578 led to a prolonged inhibition of cell proliferation and induction of apoptosis in GEO tumors. We propose that the remarkable therapeutic window observed for BI 885578 is achieved by virtue of the distinctive pharmacokinetic properties of the compound, capitalizing on the physiologic mechanisms of glucose homeostasis and differential levels of IGF1R and INSR expression in tumors and normal tissues.


Assuntos
Antígenos CD/biossíntese , Neoplasias do Colo/tratamento farmacológico , Homeostase/efeitos dos fármacos , Inibidores de Proteínas Quinases/administração & dosagem , Pirazóis/administração & dosagem , Quinazolinas/administração & dosagem , Receptor de Insulina/biossíntese , Receptores de Somatomedina/biossíntese , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Humanos , Camundongos , Receptor IGF Tipo 1 , Receptor de Insulina/antagonistas & inibidores , Receptores de Somatomedina/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
3.
J Chem Inf Model ; 55(5): 1030-44, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25815783

RESUMO

In the current study we have evaluated the applicability of ligand-based virtual screening (LBVS) methods for the identification of small fragment-like biologically active molecules using different similarity descriptors and different consensus scoring approaches. For this purpose, we have evaluated the performance of 14 chemical similarity descriptors in retrospective virtual screening studies to discriminate fragment-like ligands of three membrane-bound receptors from fragments that are experimentally determined to have no affinity for these proteins (true inactives). We used a complete fragment affinity data set of experimentally determined ligands and inactives for two G protein-coupled receptors (GPCRs), the histamine H1 receptor (H1R) and the histamine H4 receptor (H4R), and one ligand-gated ion channel (LGIC), the serotonin receptor (5-HT3AR), to validate our retrospective virtual screening studies. We have exhaustively tested consensus scoring strategies that combine the results of multiple actives (group fusion) or combine different similarity descriptors (similarity fusion), and for the first time systematically evaluated different combinations of group fusion and similarity fusion approaches. Our studies show that for these three case study protein targets both consensus scoring approaches can increase virtual screening enrichments compared to single chemical similarity search methods. Our cheminformatics analyses recommend to use a combination of both group fusion and similarity fusion for prospective ligand-based virtual fragment screening.


Assuntos
Técnicas de Química Combinatória/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Receptores Histamínicos H1/metabolismo , Receptores 5-HT3 de Serotonina/metabolismo , Interface Usuário-Computador , Consenso , Ligantes
4.
J Med Chem ; 56(11): 4264-76, 2013 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-23668417

RESUMO

The basic methylpiperazine moiety is considered a necessary substructure for high histamine H4 receptor (H4R) affinity. This moiety is however also the metabolic hot spot for various classes of H4R ligands (e.g., indolcarboxamides and pyrimidines). We set out to investigate whether mildly basic 2-aminopyrimidines in combination with the appropriate linker can serve as a replacement for the methylpiperazine moiety. In the series of 2-aminopyrimidines, the introduction of an additional 2-aminopyrimidine moiety in combination with the appropriate linker lead to bispyrimidines displaying pKi values for binding the human H4R up to 8.2. Furthermore, the methylpiperazine replacement results in compounds with improved metabolic properties. The attempt to transfer the knowledge generated in the class of bispyrimidines to the indolecarboxamides failed. Combining the derived structure-activity relationships with homology modeling leads to new detailed insights in the molecular aspects of ligand-H4R binding in general and the binding mode of the described bispyrimidines in specific.


Assuntos
Pirimidinas/química , Receptores Acoplados a Proteínas G/química , Receptores Histamínicos/química , Animais , Sítios de Ligação , Humanos , Técnicas In Vitro , Ligantes , Camundongos , Microssomos Hepáticos/metabolismo , Modelos Moleculares , Pirimidinas/síntese química , Pirimidinas/farmacologia , Teoria Quântica , Ensaio Radioligante , Receptores Acoplados a Proteínas G/metabolismo , Receptores Histamínicos/metabolismo , Receptores Histamínicos H4 , Homologia de Sequência de Aminoácidos , Solubilidade , Relação Estrutura-Atividade
5.
ChemMedChem ; 8(1): 49-53, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23161844

RESUMO

SAR beyond protein-ligand interactions: By combining structure-affinity relationships, protein-ligand modeling studies, and quantum mechanical calculations, we show that ligand conformational energies and basicity play critical roles in ligand binding to the histamine H4 receptor, a GPCR that plays a key role in inflammation.


Assuntos
Pirimidinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Histamínicos/metabolismo , Células HEK293 , Humanos , Ligantes , Conformação Molecular , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Pirimidinas/química , Receptores Acoplados a Proteínas G/química , Receptores Histamínicos/química , Receptores Histamínicos H4
6.
J Pharmacol Exp Ther ; 343(2): 342-50, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22888144

RESUMO

Deregulation of the ErbB (proto-oncogene B of the avian erythroblastosis virus AEV-H strain) receptor network is well recognized as an oncogenic driver in epithelial cancers. Several targeted drugs have been developed, including antibodies and small-molecule kinase inhibitors, each of them characterized by distinct patterns of ErbB receptor interactions. Understanding the precise pharmacological properties of these compounds is important for optimal use in clinical practice. Afatinib [BIBW 2992; N-[4-[(3-chloro-4-fluorophenyl)amino]-7-[[(3S)-tetrahydro-3-furanyl]oxy]-6-quinazolinyl]-4-(dimethylamino)-2-butenamide] is an ATP-competitive anilinoquinazoline derivative harboring a reactive acrylamide group. It was designed to covalently bind and irreversibly block enzymatically active ErbB receptor family members. Here, we show by X-ray crystallography the covalent binding of afatinib to wild-type epidermal growth factor receptor (EGFR) and by mass spectrometry the covalent interaction with EGFR, EGFRL858R/T790M, human epidermal growth factor receptor 2 (HER2), and ErbB-4. Afatinib potently inhibits the enymatic activity of ErbB-4 (EC50=1 nM) and the proliferation of cancer cell lines driven by multiple ErbB receptor aberrations at concentrations below 100 nM. N-[4-[(3-chloro-4-fluorophenyl)amino]-7-[[(3S)-tetrahydro-3-furanyl]oxy]-6-quinazolinyl]-4-(dimethylamino)-2-butanamide (BI 37781), a close analog of afatinib lacking the acrylamide group and thus incapable of covalent bond formation, had similar potency on cells driven by EGFR or EGFRL858R, but less or no detectable activity on cells expressing EGFRL858R/T790M HER2 or ErbB-4. These results stress the importance of the acrylamide group and show that afatinib differs from approved ErbB targeting agents by irreversibly inhibiting the kinase activity of all ErbB family members. They provide a mechanistic rationale for the distinct pharmacological features of this compound and explain the clinical activity seen in some patients who are resistant to antibody or kinase inhibitor therapy because of secondary mutations or ErbB receptor "reprogramming."


Assuntos
Genes erbB/efeitos dos fármacos , Quinazolinas/metabolismo , Quinazolinas/farmacologia , Afatinib , Animais , Proliferação de Células , Células Cultivadas , Cristalografia , Interpretação Estatística de Dados , Receptores ErbB/metabolismo , Genes erbB/genética , Humanos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Fosforilação , Fosfotransferases/antagonistas & inibidores , Conformação Proteica , Proto-Oncogene Mas , Quinazolinas/química , Receptor ErbB-2/antagonistas & inibidores , Análise Espectral , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície , Transfecção
7.
Eur J Med Chem ; 54: 660-8, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22749391

RESUMO

A series of 76 derivatives of the indolecarboxamide 1 were synthesized, which allows a detailed SAR investigation of this well known scaffold. The data enable the definition of a predictive QSAR model which identifies several compounds with an activity comparable to 1. A selection of these new H(4)R antagonists was synthesized and a comparison of predicted and measured values demonstrates the robustness of the model (47-55). In addition to the H(4)-receptor activity general CMC and DMPK properties were investigated. Some of the new analogs are not only excellently soluble, but display a significantly increased half-life in mouse liver microsomes as well. These properties qualify these compounds as a possible new standard for future in vivo studies (e.g 51, 52 and 55). Moreover, the current studies also provide valuable information on the potential receptor ligand interactions between the indolcarboxamides and the H(4)R protein.


Assuntos
Indóis/química , Indóis/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Histamínicos/metabolismo , Animais , Estabilidade de Medicamentos , Humanos , Ligantes , Camundongos , Microssomos Hepáticos/metabolismo , Ligação Proteica , Relação Quantitativa Estrutura-Atividade , Receptores Histamínicos H4 , Solubilidade , Relação Estrutura-Atividade
8.
Mol Inform ; 29(3): 233-42, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-27462766

RESUMO

Within the last decades, the detailed knowledge on the impact of membrane bound drug efflux transporters of the ATP binding cassette (ABC) protein family on the pharmacological profile of drugs has enormously increased. Especially, ABCB1 (P-glycoprotein, P-gp, MDR1) has attracted particular interest in medicinal chemistry, since it determines the clinical efficacy, side effects and toxicity risks of drug candidates. Based on this, the development of in silico models that provide rapid and cost-effective screening tools for the classification of substrates and nonsubstrates of ABCB1 is an urgent need in contemporary ADMET profiling. A characteristic hallmark feature of this transporter is its polyspecific ligand recognition pattern. In this study we describe a method for classifying ABCB1 ligands in terms of simple, conjunctive rules (RuleFit) based on interpretable ADMET features. The retrieved results showed that models based on large, very diverse data sets gave better classification performance than models based on smaller, more homogenous training sets. The best model achieved gave a correct classification rate of 0.90 for an external validation set. Furthermore, from the interpretation of the best performing model it could be concluded that in comparison to nonsubstrates ABCB1 substrates generally show a higher number of hydrogen-bond acceptors, are more flexible and exhibit higher logP values.

9.
Chem Biodivers ; 6(11): 1960-9, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19937827

RESUMO

ABC-type drug efflux pumps, e.g., ABCB1 (=P-glycoprotein, =MDR1), ABCC1 (=MRP1), and ABCG2 (=MXR, =BCRP), confer a multi-drug resistance (MDR) phenotype to cancer cells. Furthermore, the important contribution of ABC transporters for bioavailability, distribution, elimination, and blood-brain barrier permeation of drug candidates is increasingly recognized. This review presents an overview on the different computational methods and models pursued to predict ABC transporter substrate properties of drug-like compounds. They encompass ligand-based approaches ranging from 'simple rule'-based efforts to sophisticated machine learning methods. Many of these models show excellent performance for the data sets used. However, due to the complex nature of the applied methods, useful interpretation of the models that can be directly translated into chemical structures by the medicinal chemist is rather difficult. Additionally, very recent and promising attempts in the field of structure-based modeling of ABC transporters, which embody homology modeling as well as recently published X-ray structures of murine ABCB1, will be discussed.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Preparações Farmacêuticas/metabolismo , Absorção , Animais , Simulação por Computador , Previsões , Humanos , Ligantes , Modelos Biológicos , Modelos Moleculares , Farmacocinética , Relação Estrutura-Atividade , Distribuição Tecidual
10.
Curr Opin Drug Discov Devel ; 12(5): 628-43, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19736622

RESUMO

At the turn of the millennium, the DNA sequence encoding the histamine H4 receptor (H4R) was identified in data from human genome databases. Considering the clinical importance of H1R and H2R ligands, and the clinical trials that are ongoing for H3R ligands, the latest addition to the histamine receptor family was noted with interest by the pharmaceutical industry. Initial studies describing the expression of the H4R, and the activity of this receptor in (patho)physiology, suggested that the H4R played a role in the immune system. The introduction of the reference H4R antagonist JNJ-7777120 (Johnson & Johnson Pharmaceutical Research & Development LLC/Abbott Laboratories), and proof of the efficacy of this agent in models of asthma, allergic rhinitis and pruritus, highlighted the H4R as a novel drug target. The first clinical candidates targeting the H4R have been identified, and new H4R antagonists are expected to enter the clinic in the near future.


Assuntos
Antialérgicos/farmacologia , Descoberta de Drogas , Antagonistas dos Receptores Histamínicos/farmacologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Animais , Antialérgicos/química , Antialérgicos/uso terapêutico , Asma/tratamento farmacológico , Asma/metabolismo , Modelos Animais de Doenças , Desenho de Fármacos , Antagonistas dos Receptores Histamínicos/química , Antagonistas dos Receptores Histamínicos/uso terapêutico , Humanos , Indóis/farmacologia , Estrutura Molecular , Piperazinas/farmacologia , Prurido/tratamento farmacológico , Prurido/metabolismo , Pirimidinas/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores Histamínicos/metabolismo , Receptores Histamínicos H4 , Rinite Alérgica Perene/tratamento farmacológico , Rinite Alérgica Perene/metabolismo , Rinite Alérgica Sazonal/tratamento farmacológico , Rinite Alérgica Sazonal/metabolismo , Relação Estrutura-Atividade
11.
Bioorg Med Chem ; 17(11): 3987-94, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19414267

RESUMO

Previous studies have demonstrated that clobenpropit (N-(4-chlorobenzyl)-S-[3-(4(5)-imidazolyl)propyl]isothiourea) binds to both the human histamine H(3) receptor (H(3)R) and H(4) receptor (H(4)R). In this paper, we describe the synthesis and pharmacological characterization of a series of clobenpropit analogs, which vary in the functional group adjacent to the isothiourea moiety in order to study structural requirements for H(3)R and H(4)R ligands. The compounds show moderate to high affinity for both the human H(3)R and H(4)R. Furthermore, the changes in the functional group attached to the isothiourea moiety modulate the intrinsic activity of the ligands at the H(4)R, ranging from neutral antagonism to full agonism. QSAR models have been generated in order to explain the H(3)R and H(4)R affinities.


Assuntos
Antagonistas dos Receptores Histamínicos H3/química , Imidazóis/síntese química , Imidazóis/farmacologia , Relação Quantitativa Estrutura-Atividade , Receptores Acoplados a Proteínas G/química , Receptores Histamínicos H3/química , Receptores Histamínicos/química , Tioureia/análogos & derivados , Antagonistas dos Receptores Histamínicos H3/farmacologia , Humanos , Imidazóis/química , Ligantes , Masculino , Estrutura Molecular , Ligação Proteica/efeitos dos fármacos , Receptores Histamínicos H4 , Tioureia/síntese química , Tioureia/química , Tioureia/farmacologia
12.
J Med Chem ; 51(24): 7855-65, 2008 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-19053770

RESUMO

From a series of small fragments that was designed to probe the histamine H(4) receptor (H(4)R), we previously described quinoxaline-containing fragments that were grown into high affinity H(4)R ligands in a process that was guided by pharmacophore modeling. With a scaffold hopping exercise and using the same in silico models, we now report the identification and optimization of a series of quinazoline-containing H(4)R compounds. This approach led to the discovery of 6-chloro-N-(furan-3-ylmethyl)2-(4-methylpiperazin-1-yl)quinazolin-4-amine (VUF10499, 54) and 6-chloro-2-(4-methylpiperazin-1-yl)-N-(thiophen-2-ylmethyl)quinazolin-4-amine (VUF10497, 55) as potent human H(4)R inverse agonists (pK(i) = 8.12 and 7.57, respectively). Interestingly, both compounds also possess considerable affinity for the human histamine H(1) receptor (H(1)R) and therefore represent a novel class of dual action H(1)R/H(4)R ligands, a profile that potentially leads to added therapeutic benefit. Compounds from this novel series of quinazolines are antagonists at the rat H(4)R and were found to possess anti-inflammatory properties in vivo in the rat.


Assuntos
Agonistas dos Receptores Histamínicos/química , Quinazolinas/química , Receptores Acoplados a Proteínas G/agonistas , Animais , Anti-Inflamatórios/química , Química Farmacêutica/métodos , Desenho de Fármacos , Humanos , Concentração de Íons de Hidrogênio , Concentração Inibidora 50 , Cinética , Modelos Químicos , Modelos Moleculares , Conformação Molecular , Ratos , Receptores Histamínicos , Receptores Histamínicos H4
13.
Expert Opin Drug Metab Toxicol ; 4(9): 1167-80, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18721111

RESUMO

Overexpression of ABC (ATP-binding cassette)-type drug efflux pumps, such as ABCB1, ABCC1 and ABCG2 in cancer cells confers multi-drug resistance (MDR) and represents a major cause of treatment failures in cancer therapy. Furthermore, there is increasing evidence for the important contribution of ABC-transporters to bioavailability, distribution, elimination and blood-brain barrier permeation of drug candidates. This review presents an overview on the different computational methods and models pursued to predict ABC-transporter substrate properties of drug-like compounds. They range from linear discriminant analysis to pharmacophore modelling and machine learning algorithms. Many of these models show a satisfying performance within the study-specific, defined chemical space but general applicability for the whole drug-like chemical space still needs to be proven. First attempts aiming towards selectivity profiling for ligands of the two polyspecific transporters ABCB1 and ABCG2 is also discussed. This might pave the way for a pharmacological profiling of compound series with special focus on their ADMET (absorption, distribution, metabolism, excretion and toxicity) properties.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Simulação por Computador , Preparações Farmacêuticas/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Algoritmos , Previsões , Humanos , Ligantes , Modelos Biológicos , Proteínas de Neoplasias/metabolismo
14.
J Pharmacol Exp Ther ; 327(1): 88-96, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18635748

RESUMO

Using the natural variation in histamine H(4) receptor protein sequence, we tried to identify amino acids involved in the binding of H(4) receptor agonists. To this end, we constructed a variety of chimeric human-mouse H(4) receptor proteins to localize the domain responsible for the observed pharmacological differences between human and mouse H(4) receptors in the binding of H(4) receptor agonists, such as histamine, clozapine, and VUF 8430 [S-(2-guanidylethyl)-isothiourea]. After identification of a domain between the top of transmembrane domain 4 and the top of transmembrane domain 5 as being responsible for the differences in agonist affinity between human and mouse H(4)Rs, detailed site-directed mutagenesis studies were performed. These studies identified Phe(169) in the second extracellular loop as the single amino acid responsible for the differences in agonist affinity between the human and mouse H(4)Rs. Phe(169) is part of a Phe-Phe motif, which is also present in the recently crystallized beta(2)-adrenergic receptor. These results point to an important role of the second extracellular loop in the agonist binding to the H(4) receptor and provide a molecular explanation for the species difference between human and mouse H(4) receptors.


Assuntos
Receptores Acoplados a Proteínas G/química , Receptores Histamínicos/química , Sequência de Aminoácidos , Animais , Linhagem Celular , Histamina/metabolismo , Humanos , Indóis/metabolismo , Camundongos , Dados de Sequência Molecular , Fenilalanina , Piperazinas/metabolismo , Receptores Adrenérgicos beta 2/química , Receptores Acoplados a Proteínas G/agonistas , Receptores Histamínicos H4 , Especificidade da Espécie
15.
J Chem Inf Model ; 48(7): 1455-63, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18553960

RESUMO

A three-dimensional homology model of the human histamine H 4 receptor was developed to investigate the binding mode of a series of structurally diverse H 4-agonists, i.e. histamine, clozapine, and the recently described selective, nonimidazole agonist VUF 8430. Mutagenesis studies and docking of these ligands in a rhodopsin-based homology model revealed two essential points of interactions in the binding pocket, i.e. Asp3.32 and Glu5.46 (Ballesteros-Weinstein numbering system). It is postulated that Asp3.32 interacts in its anionic state, whereas Glu5.46 interacts in its neutral form. The hypothesis was tested with the point mutations D3.32N and E5.46Q. For the D3.32N no binding affinity toward any of the ligands could be detected. This is in sharp contrast to the E5.46Q mutant, which discriminates between various ligands. The affinity of histamine-like ligands was decreased approximately a 1000-fold, whereas the affinity of all other ligands remained virtually unchanged. The proposed model for agonist binding as well as ab initio calculations for histamine and VUF 8430 explain the observed differences in binding to the H 4R mutants. These studies provide a molecular understanding for the action of a variety of H 4 receptor-ligands. The resulting H 4 receptor model will be the basis for the development of new H 4 receptor-ligands.


Assuntos
Agonistas dos Receptores Histamínicos/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Sequência de Aminoácidos , Linhagem Celular , Agonistas dos Receptores Histamínicos/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ensaio Radioligante , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores Histamínicos/química , Receptores Histamínicos/metabolismo , Receptores Histamínicos H4 , Homologia de Sequência de Aminoácidos
16.
Nat Chem Biol ; 1(2): 98-103, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16408006

RESUMO

G protein-coupled receptors (GPCRs) constitute a large and functionally diverse family of transmembrane proteins. They are fundamental in the transfer of extracellular stimuli to intracellular signaling pathways and are among the most targeted proteins in drug discovery. The detailed molecular mechanism for agonist-induced activation of rhodopsin-like GPCRs has not yet been described. Using a combination of site-directed mutagenesis and molecular modeling, we characterized important steps in the activation of the human histamine H1 receptor. Both Ser3.36 and Asn7.45 are important links between histamine binding and previously proposed conformational changes in helices 6 and 7. Ser3.36 acts as a rotamer toggle switch that, upon agonist binding, initiates the activation of the receptor through Asn7.45. The proposed transduction involves specific residues that are conserved among rhodopsin-like GPCRs.


Assuntos
Agonistas dos Receptores Histamínicos/metabolismo , Agonistas dos Receptores Histamínicos/farmacologia , Receptores Histamínicos H1/química , Receptores Histamínicos H1/metabolismo , Animais , Células COS , Chlorocebus aethiops , Agonistas dos Receptores Histamínicos/química , Humanos , Modelos Moleculares , Mutação/genética , Estrutura Terciária de Proteína , Receptores Histamínicos H1/genética , Serina/genética , Serina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...