Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Evolution ; 77(8): 1791-1805, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37224479

RESUMO

The occurrence of within-population variation in germination behavior and associated traits such as seed size has long fascinated evolutionary ecologists. In annuals, unpredictable environments are known to select for bet-hedging strategies causing variation in dormancy duration and germination strategies. Variation in germination timing and associated traits is also commonly observed in perennials and often tracks gradients of environmental predictability. Although bet-hedging is thought to occur less frequently in long-lived organisms, these observations suggest a role of bet-hedging strategies in perennials occupying unpredictable environments. We use complementary analytical and evolutionary simulation models of within-individual variation in germination behavior in seasonal environments to show how bet-hedging interacts with fluctuating selection, life-history traits, and competitive asymmetries among germination strategies. We reveal substantial scope for bet-hedging to produce variation in germination behavior in long-lived plants, when "false starts" to the growing season results in either competitive advantages or increased mortality risk for alternative germination strategies. Additionally, we find that lowering adult survival may, in contrast to classic bet-hedging theory, result in less spreading of germination by decreasing density-dependent competition. These models extend insights from bet-hedging theory to perennials and explore how competitive communities may be affected by ongoing changes in climate and seasonality patterns.


Assuntos
Clima , Germinação , Plantas , Sementes , Estações do Ano
2.
Biol Rev Camb Philos Soc ; 97(5): 1999-2021, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35790067

RESUMO

Learning is a familiar process to most people, but it currently lacks a fully developed theoretical position within evolutionary biology. Learning (memory and forgetting) involves adjustments in behaviour in response to cumulative sequences of prior experiences or exposures to environmental cues. We therefore suggest that all forms of learning (and some similar biological phenomena in development, aging, acquired immunity and acclimation) can usefully be viewed as special cases of phenotypic plasticity, and formally modelled by expanding the concept of reaction norms to include additional environmental dimensions quantifying sequences of cumulative experience (learning) and the time delays between events (forgetting). Memory therefore represents just one of a number of different internal neurological, physiological, hormonal and anatomical 'states' that mediate the carry-over effects of cumulative environmental experiences on phenotypes across different time periods. The mathematical and graphical conceptualisation of learning as plasticity within a reaction norm framework can easily accommodate a range of different ecological scenarios, closely linking statistical estimates with biological processes. Learning and non-learning plasticity interact whenever cumulative prior experience causes a modification in the reaction norm (a) elevation [mean phenotype], (b) slope [responsiveness], (c) environmental estimate error [informational memory] and/or (d) phenotypic precision [skill acquisition]. Innovation and learning new contingencies in novel (laboratory) environments can also be accommodated within this approach. A common reaction norm approach should thus encourage productive cross-fertilisation of ideas between traditional studies of learning and phenotypic plasticity. As an example, we model the evolution of plasticity with and without learning under different levels of environmental estimation error to show how learning works as a specific adaptation promoting phenotypic plasticity in temporally autocorrelated environments. Our reaction norm framework for learning and analogous biological processes provides a conceptual and mathematical structure aimed at usefully stimulating future theoretical and empirical investigations into the evolution of plasticity across a wider range of ecological contexts, while providing new interdisciplinary connections regarding learning mechanisms.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Aclimatação , Humanos , Fenótipo
3.
J Evol Biol ; 34(7): 1022-1033, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33844340

RESUMO

Reversible plasticity in phenotypic traits allows organisms to cope with environmental variation within lifetimes, but costs of plasticity may limit just how well the phenotype matches the environmental optimum. An additional adaptive advantage of plasticity might be to reduce fitness variance, in other words: bet-hedging to maximize geometric (rather than simply arithmetic) mean fitness. Here, we model the evolution of plasticity in the form of reaction norm slopes, with increasing costs as the slope or degree of plasticity increases. We find that greater investment in plasticity (i.e. a steeper reaction norm slope) is favoured in scenarios promoting bet-hedging as a response to multiplicative fitness accumulation (i.e. coarser environmental grains and fewer time steps prior to reproduction), because plasticity lowers fitness variance across environmental conditions. In contrast, in scenarios with finer environmental grain and many time steps prior to reproduction, bet-hedging plays less of a role and individual-level optimization favours evolution of shallower reaction norm slopes. However, the opposite pattern holds if plasticity costs themselves result in increased fitness variation, as might be the case for production costs of plasticity that depend on how much change is made to the phenotype each time step. We discuss these contrasting predictions from this partitioning of adaptive plasticity into short-term individual benefits versus long-term genotypic (bet-hedging) benefits, and how this approach enhances our understanding of the evolution of optimum levels of plasticity in examples from thermal physiology to advances in avian lay dates.


Assuntos
Adaptação Fisiológica , Reprodução , Adaptação Fisiológica/genética , Evolução Biológica , Genótipo , Fenótipo
4.
Ecol Evol ; 9(20): 11752-11761, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31695885

RESUMO

Extreme weather events are becoming more frequent, severe, and/or widespread as a consequence of anthropogenic climate change. While the economic and ecological implications of these changes have received considerable attention, the role of evolutionary processes in determining organismal responses to these critical challenges is currently unknown. Here we develop a novel theoretical framework that explores how alternative pathways for adaptation to rare selection events can influence population-level vulnerabilities to future changes in the frequency, scope, and intensity of environmental extremes. We begin by showing that different life histories and trait expression profiles can shift the balance between additive and multiplicative properties of fitness accumulation, favoring different evolutionary responses to identical environmental phenomena. We then demonstrate that these different adaptive outcomes lead to predictable differences in population-level vulnerabilities to rapid increases in the frequency, intensity, or scope of extreme weather events. Specifically, we show that when the primary mode of fitness accumulation is additive, evolution favors ignoring environmental extremes and lineages become highly vulnerable to extinction if the frequency or scope of extreme weather events suddenly increases. Conversely, when fitness accumulates primarily multiplicatively, evolution favors bet-hedging phenotypes that cope well with historical extremes and are instead vulnerable to sudden increases in extreme event intensity. Our findings address a critical gap in our understanding of the potential consequences of rare selection events and provide a relatively simple rubric for assessing the vulnerabilities of any population of interest to changes in a wide variety of extreme environmental phenomena.

5.
Proc Biol Sci ; 286(1916): 20192070, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31771482

RESUMO

In order to understand how organisms cope with ongoing changes in environmental variability, it is necessary to consider multiple adaptations to environmental uncertainty on different time scales. Conservative bet-hedging (CBH) represents a long-term genotype-level strategy maximizing lineage geometric mean fitness in stochastic environments by decreasing individual fitness variance, despite also lowering arithmetic mean fitness. Meanwhile, variance-prone (aka risk-prone) strategies produce greater variance in short-term payoffs, because this increases expected arithmetic mean fitness if the relationship between payoffs and fitness is accelerating. Using evolutionary simulation models, we investigate whether selection for such variance-prone strategies is counteracted by selection for bet-hedging that works to adaptively reduce fitness variance. In our model, variance proneness evolves in fine-grained environments (lower correlations among individuals in energetic state and/or payoffs), and with larger numbers of independent decision events over which resources accumulate prior to selection. Conversely, multiplicative fitness accumulation, caused by coarser environmental grain and fewer decision events selection, favours CBH via greater variance aversion. We discuss examples of variance-sensitive strategies in optimal foraging, migration, life histories and cooperative breeding using this bet-hedging perspective. By linking disparate fields of research studying adaptations to variable environments, we should be better able to understand effects of human-induced rapid environmental change.


Assuntos
Evolução Biológica , Adaptação Fisiológica , Animais , Humanos , Seleção Genética , Incerteza
6.
Am Nat ; 190(4): 534-546, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28937815

RESUMO

Differential allocation (DA) is the adaptive adjustment of reproductive investment (up or down) according to partner quality. A lack of theoretical treatments has led to some confusion in the interpretation of DA in the empirical literature. We present a formal framework for DA that highlights the nature of reproductive benefits versus costs for females mated to males of different quality. Contrary to popular belief, analytical and stochastic dynamic models both show that additive benefits of male quality on offspring fitness have no effect on optimal levels of female investment and thus cannot produce DA. Instead, if offspring fitness is affected multiplicatively by male quality, or male quality affects the female cost function, DA is expected because of changes in the marginal benefits or costs of extra investment. Additive male quality effects on the female cost function can cause a novel form of weak DA, because reduced costs can slightly favor current over future reproduction. Combinations of these distinct effects in more realistic model scenarios can explain various patterns of positive and negative DA reported for different species and mating systems. Our model therefore sheds new light on the diversity of empirical results by providing a strong conceptual framework for the DA hypothesis.


Assuntos
Reprodução , Comportamento Sexual Animal , Animais , Feminino , Masculino , Pais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...