Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Phys Rev E ; 95(3-1): 031204, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28415208

RESUMO

Measurements of hydrodynamic instability growth for a high-density carbon ablator for indirectly driven inertial confinement fusion implosions on the National Ignition Facility are reported. We observe significant unexpected features on the capsule surface created by shadows of the capsule fill tube, as illuminated by laser-irradiated x-ray spots on the hohlraum wall. These shadows increase the spatial size and shape of the fill tube perturbation in a way that can significantly degrade performance in layered implosions compared to previous expectations. The measurements were performed at a convergence ratio of ∼2 using in-flight x-ray radiography. The initial seed due to shadow imprint is estimated to be equivalent to ∼50-100 nm of solid ablator material. This discovery has prompted the need for a mitigation strategy for future inertial confinement fusion designs as proposed here.

3.
Phys Rev Lett ; 115(10): 105001, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26382681

RESUMO

Hydrodynamic instabilities can cause capsule defects and other perturbations to grow and degrade implosion performance in ignition experiments at the National Ignition Facility (NIF). Here, we show the first experimental demonstration that a strong unsupported first shock in indirect drive implosions at the NIF reduces ablation front instability growth leading to a 3 to 10 times higher yield with fuel ρR>1 g/cm(2). This work shows the importance of ablation front instability growth during the National Ignition Campaign and may provide a path to improved performance at the high compression necessary for ignition.

4.
Phys Rev Lett ; 115(5): 055001, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26274424

RESUMO

We report on the first layered deuterium-tritium (DT) capsule implosions indirectly driven by a "high-foot" laser pulse that were fielded in depleted uranium hohlraums at the National Ignition Facility. Recently, high-foot implosions have demonstrated improved resistance to ablation-front Rayleigh-Taylor instability induced mixing of ablator material into the DT hot spot [Hurricane et al., Nature (London) 506, 343 (2014)]. Uranium hohlraums provide a higher albedo and thus an increased drive equivalent to an additional 25 TW laser power at the peak of the drive compared to standard gold hohlraums leading to higher implosion velocity. Additionally, we observe an improved hot-spot shape closer to round which indicates enhanced drive from the waist. In contrast to findings in the National Ignition Campaign, now all of our highest performing experiments have been done in uranium hohlraums and achieved total yields approaching 10^{16} neutrons where more than 50% of the yield was due to additional heating of alpha particles stopping in the DT fuel.

5.
Phys Rev Lett ; 114(14): 145004, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25910132

RESUMO

Experiments have recently been conducted at the National Ignition Facility utilizing inertial confinement fusion capsule ablators that are 175 and 165 µm in thickness, 10% and 15% thinner, respectively, than the nominal thickness capsule used throughout the high foot and most of the National Ignition Campaign. These three-shock, high-adiabat, high-foot implosions have demonstrated good performance, with higher velocity and better symmetry control at lower laser powers and energies than their nominal thickness ablator counterparts. Little to no hydrodynamic mix into the DT hot spot has been observed despite the higher velocities and reduced depth for possible instability feedthrough. Early results have shown good repeatability, with up to 1/2 the neutron yield coming from α-particle self-heating.

6.
Artigo em Inglês | MEDLINE | ID: mdl-25122242

RESUMO

Hydrodynamic instabilities are a major obstacle in the quest to achieve ignition as they cause preexisting capsule defects to grow and ultimately quench the fusion burn in experiments at the National Ignition Facility. Unstable growth at the ablation front has been dramatically reduced in implosions with "high-foot" drives as measured using x-ray radiography of modulations at the most dangerous wavelengths (Legendre mode numbers of 30-90). These growth reductions have helped to improve the performance of layered DT implosions reported by O. A. Hurricane et al. [Nature (London) 506, 343 (2014)], when compared to previous "low-foot" experiments, demonstrating the value of stabilizing ablation-front growth and providing directions for future ignition designs.


Assuntos
Deutério/química , Hidrodinâmica , Fusão Nuclear , Trítio/química , Modelos Químicos
7.
Phys Rev Lett ; 112(18): 185003, 2014 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-24856703

RESUMO

Ignition experiments have shown an anomalous susceptibility to hydrodynamic instability growth. To help understand these results, the first hydrodynamic instability growth measurements in indirectly driven implosions on the National Ignition Facility were performed at ignition conditions with peak radiation temperatures up to ∼300 eV. Plastic capsules with two-dimensional preimposed, sinusoidal outer surface modulations of initial wavelengths of 240 (corresponding to a Legendre mode number of 30), 120 (mode 60), and 80 µm (mode 90) were imploded by using actual low-adiabat ignition laser pulses. The measured growth was in excellent agreement, validating 2D hydra simulations for the most dangerous modes in the acceleration phase. These results reinforce confidence in the predictive capability of calculations that are paramount to illuminating the path toward ignition.

8.
Phys Rev Lett ; 112(2): 025002, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24484021

RESUMO

We present the first results from an experimental campaign to measure the atomic ablator-gas mix in the deceleration phase of gas-filled capsule implosions on the National Ignition Facility. Plastic capsules containing CD layers were filled with tritium gas; as the reactants are initially separated, DT fusion yield provides a direct measure of the atomic mix of ablator into the hot spot gas. Capsules were imploded with x rays generated in hohlraums with peak radiation temperatures of ∼294 eV. While the TT fusion reaction probes conditions in the central part (core) of the implosion hot spot, the DT reaction probes a mixed region on the outer part of the hot spot near the ablator-hot-spot interface. Experimental data were used to develop and validate the atomic-mix model used in two-dimensional simulations.

9.
Phys Rev Lett ; 111(21): 215001, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24313493

RESUMO

Radiation-driven, low-adiabat, cryogenic DT layered plastic capsule implosions were carried out on the National Ignition Facility (NIF) to study the sensitivity of performance to peak power and drive duration. An implosion with extended drive and at reduced peak power of 350 TW achieved the highest compression with fuel areal density of ~1.3±0.1 g/cm2, representing a significant step from previously measured ~1.0 g/cm2 toward a goal of 1.5 g/cm2. Future experiments will focus on understanding and mitigating hydrodynamic instabilities and mix, and improving symmetry required to reach the threshold for thermonuclear ignition on NIF.

10.
Phys Rev Lett ; 111(8): 085004, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-24010449

RESUMO

Deuterium-tritium inertial confinement fusion implosion experiments on the National Ignition Facility have demonstrated yields ranging from 0.8 to 7×10(14), and record fuel areal densities of 0.7 to 1.3 g/cm2. These implosions use hohlraums irradiated with shaped laser pulses of 1.5-1.9 MJ energy. The laser peak power and duration at peak power were varied, as were the capsule ablator dopant concentrations and shell thicknesses. We quantify the level of hydrodynamic instability mix of the ablator into the hot spot from the measured elevated absolute x-ray emission of the hot spot. We observe that DT neutron yield and ion temperature decrease abruptly as the hot spot mix mass increases above several hundred ng. The comparison with radiation-hydrodynamic modeling indicates that low mode asymmetries and increased ablator surface perturbations may be responsible for the current performance.

11.
Phys Rev Lett ; 111(4): 045001, 2013 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-23931375

RESUMO

Mixing of plastic ablator material, doped with Cu and Ge dopants, deep into the hot spot of ignition-scale inertial confinement fusion implosions by hydrodynamic instabilities is diagnosed with x-ray spectroscopy on the National Ignition Facility. The amount of hot-spot mix mass is determined from the absolute brightness of the emergent Cu and Ge K-shell emission. The Cu and Ge dopants placed at different radial locations in the plastic ablator show the ablation-front hydrodynamic instability is primarily responsible for hot-spot mix. Low neutron yields and hot-spot mix mass between 34(-13,+50) ng and 4000(-2970,+17 160) ng are observed.

12.
Phys Rev Lett ; 110(7): 075001, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25166377

RESUMO

The sensitivity of inertial confinement fusion implosions, of the type performed on the National Ignition Facility (NIF) [1], to low-mode flux asymmetries is investigated numerically. It is shown that large-amplitude, low-order mode shapes (Legendre polynomial P(4), resulting from low-order flux asymmetries, cause spatial variations in capsule and fuel momentum that prevent the deuterium and tritium (DT) "ice" layer from being decelerated uniformly by the hot spot pressure. This reduces the transfer of implosion kinetic energy to internal energy of the central hot spot, thus reducing the neutron yield. Furthermore, synthetic gated x-ray images of the hot spot self-emission indicate that P(4) shapes may be unquantifiable for DT layered capsules. Instead the positive P(4) asymmetry "aliases" itself as an oblate P(2) in the x-ray images. Correction of this apparent P(2) distortion can further distort the implosion while creating a round x-ray image. Long wavelength asymmetries may be playing a significant role in the observed yield reduction of NIF DT implosions relative to detailed postshot two-dimensional simulations.

13.
Rev Sci Instrum ; 83(10): 10D308, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23126835

RESUMO

DT neutron yield (Y(n)), ion temperature (T(i)), and down-scatter ratio (dsr) determined from measured neutron spectra are essential metrics for diagnosing the performance of inertial confinement fusion (ICF) implosions at the National Ignition Facility (NIF). A suite of neutron-time-of-flight (nTOF) spectrometers and a magnetic recoil spectrometer (MRS) have been implemented in different locations around the NIF target chamber, providing good implosion coverage and the complementarity required for reliable measurements of Y(n), T(i), and dsr. From the measured dsr value, an areal density (ρR) is determined through the relationship ρR(tot) (g∕cm(2)) = (20.4 ± 0.6) × dsr(10-12 MeV). The proportionality constant is determined considering implosion geometry, neutron attenuation, and energy range used for the dsr measurement. To ensure high accuracy in the measurements, a series of commissioning experiments using exploding pushers have been used for in situ calibration of the as-built spectrometers, which are now performing to the required accuracy. Recent data obtained with the MRS and nTOFs indicate that the implosion performance of cryogenically layered DT implosions, characterized by the experimental ignition threshold factor (ITFx), which is a function of dsr (or fuel ρR) and Y(n), has improved almost two orders of magnitude since the first shot in September, 2010.

14.
Phys Rev Lett ; 108(21): 215004, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-23003273

RESUMO

Ignition implosions on the National Ignition Facility [J. D. Lindl et al., Phys. Plasmas 11, 339 (2004)] are underway with the goal of compressing deuterium-tritium fuel to a sufficiently high areal density (ρR) to sustain a self-propagating burn wave required for fusion power gain greater than unity. These implosions are driven with a very carefully tailored sequence of four shock waves that must be timed to very high precision to keep the fuel entropy and adiabat low and ρR high. The first series of precision tuning experiments on the National Ignition Facility, which use optical diagnostics to directly measure the strength and timing of all four shocks inside a hohlraum-driven, cryogenic liquid-deuterium-filled capsule interior have now been performed. The results of these experiments are presented demonstrating a significant decrease in adiabat over previously untuned implosions. The impact of the improved shock timing is confirmed in related deuterium-tritium layered capsule implosions, which show the highest fuel compression (ρR~1.0 g/cm(2)) measured to date, exceeding the previous record [V. Goncharov et al., Phys. Rev. Lett. 104, 165001 (2010)] by more than a factor of 3. The experiments also clearly reveal an issue with the 4th shock velocity, which is observed to be 20% slower than predictions from numerical simulation.

15.
Phys Rev Lett ; 108(21): 215005, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-23003274

RESUMO

The National Ignition Facility has been used to compress deuterium-tritium to an average areal density of ~1.0±0.1 g cm(-2), which is 67% of the ignition requirement. These conditions were obtained using 192 laser beams with total energy of 1-1.6 MJ and peak power up to 420 TW to create a hohlraum drive with a shaped power profile, peaking at a soft x-ray radiation temperature of 275-300 eV. This pulse delivered a series of shocks that compressed a capsule containing cryogenic deuterium-tritium to a radius of 25-35 µm. Neutron images of the implosion were used to estimate a fuel density of 500-800 g cm(-3).

16.
Phys Rev Lett ; 108(13): 135006, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22540711

RESUMO

We have imaged hard x-ray (>100 keV) bremsstrahlung emission from energetic electrons slowing in a plastic ablator shell during indirectly driven implosions at the National Ignition Facility. We measure 570 J in electrons with E>100 keV impinging on the fusion capsule under ignition drive conditions. This translates into an acceptable increase in the adiabat α, defined as the ratio of total deuterium-tritium fuel pressure to Fermi pressure, of 3.5%. The hard x-ray observables are consistent with detailed radiative-hydrodynamics simulations, including the sourcing and transport of these high energy electrons.

17.
Phys Rev Lett ; 102(2): 025004, 2009 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-19257284

RESUMO

Radiative hydrodynamics simulations of ignition experiments show that energy transfer between crossing laser beams allows tuning of the implosion symmetry. A new full-scale, three-dimensional quantitative model has been developed for crossed-beam energy transfer, allowing calculations of the propagation and coupling of multiple laser beams and their associated plasma waves in ignition hohlraums. This model has been implemented in a radiative-hydrodynamics code, demonstrating control of the implosion symmetry by a wavelength separation between cones of laser beams.

18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(5 Pt 2): 056403, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18233772

RESUMO

In the field of inertial confinement fusion (ICF), work has been consistently progressing in the past decade toward a more fundamental understanding of the plasma conditions in ICF implosion cores. The research presented here represents a substantial evolution in the ability to diagnose plasma temperatures and densities, along with characteristics of mixing between fuel and shell materials. Mixing is a vital property to study and quantify, since it can significantly affect implosion quality. We employ a number of new spectroscopic techniques that allow us to probe these important quantities. The first technique developed is an emissivity analysis, which uses the emissivity ratio of the optically thin Lybeta and Hebeta lines to spectroscopically extract temperature profiles, followed by the solution of emissivity equations to infer density profiles. The second technique, an intensity analysis, models the radiation transport through the implosion core. The nature of the intensity analysis allows us to use an optically thick line, the Lyalpha, to extract information on mixing near the core edge. With this work, it is now possible to extract directly from experimental data not only detailed temperature and density maps of the core, but also spatial mixing profiles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...