Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Evol Appl ; 13(9): 2264-2283, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33005223

RESUMO

Biological control is a promising approach to reduce plant diseases caused by nematodes to ensure high productivity in agricultural production. Large-scale analyses of genetic variation in fungal species used for biocontrol can generate knowledge regarding interaction mechanisms that can improve efficacy of biocontrol applications. In this study, we performed a genome-wide association study (GWAS) for in vitro antagonism against the root lesion nematode Pratylenchus penetrans in 53 previously genome re-sequenced strains of the biocontrol fungus Clonostachys rosea. Nematode mortality in C. rosea potato dextrose broth (PDB) culture filtrates was highly variable and showed continuous variation (p < .001) between strains, indicating a polygenic inheritance. Twenty-one strains produced culture filtrates with higher (p ≤ .05) nematode mortality compared with the PDB control treatment, while ten strains lowered (p ≤ .05) the mortality. The difference in in vitro antagonism against P. penetrans correlated with antagonism against the soybean cyst nematode Heterodera glycines, indicating lack of host specificity in C. rosea. An empirical Bayesian multiple hypothesis testing approach identified 279 single nucleotide polymorphism markers significantly (local false sign rate < 10-10) associated with the trait. Genes present in the genomic regions associated with nematicidal activity included several membrane transporters, a chitinase and genes encoding proteins predicted to biosynthesize secondary metabolites. Gene deletion strains of the predicted nonribosomal peptide synthetase genes nps4 and nps5 were generated and showed increased (p ≤ .001) fungal growth and conidiation rates compared to the wild type. Deletion strains also exhibited reduced (p < .001) nematicidal activity and reduced (p ≤ .05) biocontrol efficacy against nematode root disease and against fusarium foot rot on wheat. In summary, we show that the GWAS approach can be used to identify biocontrol factors in C. rosea, specifically the putative nonribosomal peptide synthetases NPS4 and NPS5.

2.
Phytopathology ; 110(8): 1388-1397, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32286919

RESUMO

Fungal biological control of soybean cyst nematodes (SCN) is an important component of integrated pest management for soybean. However, very few fungal biological control agents are available in the market. In this study, we have screened fungi previously isolated from SCN cysts over 3 years from a long-term crop rotation field experiment for their ability to antagonize SCN using (i) parasitism, (ii) egg hatch inhibition, and (iii) J2 mortality. We evaluated egg parasitism using an in-vitro egg parasitism bioassays and scored parasitism using the egg parasitic index (EPI) and fluorescent microscopy. The ability of these fungi to produce metabolites causing egg hatch inhibition and J2 mortality was assessed in bioassays using filter-sterilized culture filtrates. We identified 10 high-performing isolates each for egg parasitism and toxicity toward SCN eggs and J2s and repeated the tests after storage for 1 year of cryopreservation at -80°C to validate the durability of biocontrol potential of the chosen 20 isolates. Although the parasitic ability changed slightly for the majority of strains after cryopreservation, they still scored 5/10 on EPI scales. There were no differences in the ability of fungi to produce antinemic metabolites after cryopreservation.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Cistos , Micobioma , Nematoides , Animais , Agentes de Controle Biológico , Doenças das Plantas , Glycine max
3.
J Nematol ; 52: 1-17, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32180383

RESUMO

The soybean cyst nematode (SCN) is the most important pest on soybean, a major crop worldwide. The SCN is considered both parasitic and pathogenic as it derives nutrition from the host and manipulates host physiology to do so. Currently, there are no commercially available chemicals that are specific, environmentally safe and cost effective to control SCN levels. Crop rotation, use of host resistance and other cultural practices remain the main management strategies. The need for bioprospecting other methods of controlling SCN is paramount, and fungi show promise in that respect. Several studies have evaluated fungi and fungal products as biocontrol options against plant-parasitic nematodes. This review discusses fungal genera isolated from the SCN with potential for use as biocontrol agents and the effects of their secondary metabolites on various stages of SCN development. The review also summarizes efforts to control SCN using soil amendments that could potentially impact fungal communities in the soil.The soybean cyst nematode (SCN) is the most important pest on soybean, a major crop worldwide. The SCN is considered both parasitic and pathogenic as it derives nutrition from the host and manipulates host physiology to do so. Currently, there are no commercially available chemicals that are specific, environmentally safe and cost effective to control SCN levels. Crop rotation, use of host resistance and other cultural practices remain the main management strategies. The need for bioprospecting other methods of controlling SCN is paramount, and fungi show promise in that respect. Several studies have evaluated fungi and fungal products as biocontrol options against plant-parasitic nematodes. This review discusses fungal genera isolated from the SCN with potential for use as biocontrol agents and the effects of their secondary metabolites on various stages of SCN development. The review also summarizes efforts to control SCN using soil amendments that could potentially impact fungal communities in the soil.

4.
Phytopathology ; 110(3): 603-614, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31631807

RESUMO

Although fungal endophytes are commonly investigated for their ability to deter microbial plant pathogens, few studies have examined the activity of fungal root endophytes against nematodes. The soybean cyst nematode (SCN; Heterodera glycines), the most severe yield-limiting pathogen of soybean (Glycine max), is commonly managed through rotation of soybean with corn (Zea mays), a nonhost of the SCN. A total of 626 fungal endophytes were isolated from surface-sterilized corn and soybean roots from experimental plots in which soybean and corn had been grown under annual rotation and under 1, 3, 5, and 35 years of continuous monoculture. Fungal isolates were grouped into 401 morphotypes, which were clustered into 108 operational taxonomic units (OTUs) based on 99% sequence similarity of the full internal transcribed spacer region. Morphotype representatives within each OTU were grown in malt extract broth and in a secondary metabolite-inducing medium buffered with ammonium tartrate, and their culture filtrates were tested for nematicidal activity against SCN juveniles. A majority of OTUs containing isolates with nematicidal culture filtrates were in the order Hypocreales, with the genus Fusarium being the most commonly isolated nematicidal genus from corn and soybean roots. Less commonly isolated taxa from soybean roots included the nematophagous fungi Hirsutella rhossiliensis, Metacordyceps chlamydosporia, and Arthrobotrys iridis. Root endophytic fungal diversity in soybean was positively correlated with SCN density, suggesting that the SCN plays a role in shaping the soybean root endophytic community.


Assuntos
Cistos , Glycine max , Animais , Fungos , Doenças das Plantas , Zea mays
5.
Front Microbiol ; 10: 2671, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824456

RESUMO

Soybean cyst nematode (SCN), Heterodera glycines Ichinohe, is the number 1 pathogen of the important economic crop soybean. Bacteria represent potential biocontrol agents of the SCN, but few studies have characterized the dynamics of bacterial communities associated with cysts under different crop rotation sequences. The bacterial communities in SCN cysts in a long-term soybean-corn crop rotation experiment were investigated over 2 years. The crop sequences included long-term soybean monoculture (Ss), years 1-5 of soybean following 5 years corn (S1-S5), years 1 and 2 of corn following 5 years soybean (C1 and C2), and soybean-corn annual rotation (Sa and Ca). The bacterial 16S rRNA V4 region was amplified from DNA isolated from SCN cysts collected in spring at planting, midseason (2 months later), and fall at harvest and sequenced on the Illumina MiSeq platform. The SCN cyst microbiome was dominated by Proteobacteria followed by Actinobacteria, Bacteroidetes, and Verrucomicrobia. The bacterial community composition was influenced by both crop sequence and season. Although differences by crop sequence were not significant in the spring of each year, bacterial communities in cysts from annual rotation (Sa and Ca) or crop sequences of early years of monoculture following a 5-year rotation of the alternate crop (S1 and C1) became rapidly differentiated by crop over a single growing season. In the fall, genera of cyst bacteria associated with soybean crop sequences included Rhizobacter, Leptothrix, Cytophaga, Chitinophaga, Niastella, Streptomyces, and Halangium. The discovery of diverse bacterial taxa in SCN cysts and their dynamics across crop rotation sequences provides invaluable information for future development of biological control of the SCN.

6.
Front Microbiol ; 9: 386, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29615984

RESUMO

The soybean cyst nematode (SCN), Heterodera glycines Ichinohe (Phylum Nematoda), is a major pathogen of soybean. It causes substantial yield losses worldwide and is difficult to control because the cyst protects the eggs which can remain viable for nearly a decade. Crop rotation with non-host crops and use of biocontrol organisms such as fungi and bacteria offer promising approaches, but remain hampered by lack of knowledge of the biology of nematode parasitic organisms. We used a high-throughput metabarcoding approach to characterize fungal communities associated with the SCN cyst, a microenvironment in soil that may harbor both nematode parasites and plant pathogens. SCN cysts were collected from a long-term crop rotation experiment in Southeastern Minnesota at three time points over two growing seasons to characterize diversity of fungi inhabiting cysts and to examine how crop rotation and seasonal variation affects fungal communities. A majority of fungi in cysts belonged to Ascomycota and Basidiomycota, but the presence of several early diverging fungal subphyla thought to be primarily plant and litter associated, including Mortierellomycotina and Glomeromycotina (e.g., arbuscular mycorrhizal fungi), suggests a possible role as nematode egg parasites. Species richness varied by both crop rotation and season and was higher in early years of crop rotation and in fall at the end of the growing season. Crop rotation and season also impacted fungal community composition and identified several classes of fungi, including Eurotiomycetes, Sordariomycetes, and Orbiliomycetes (e.g., nematode trapping fungi), with higher relative abundance in early soybean rotations. The relative abundance of several genera was correlated with increasing years of soybean. Fungal communities also varied by season and were most divergent at midseason. The percentage of OTUs assigned to Mortierellomycotina_cls_Incertae_sedis and Sordariomycetes increased at midseason, while Orbiliomycetes decreased at midseason, and Glomeromycetes increased in fall. Ecological guilds of fungi containing an animal-pathogen lifestyle, as well as potential egg-parasitic taxa previously isolated from parasitized SCN eggs, increased at midseason. The animal pathogen guilds included known (e.g., Pochonia chlamydosporia) and new candidate biocontrol organisms. This research advances knowledge of the ecology of nematophagous fungi in agroecosystems and their use as biocontrol agents of the SCN.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...