Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 10(9)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36144292

RESUMO

Enterohemorrhagic Escherichia coli (EHEC) can cause severe diarrheic in humans. To improve therapy options, a better understanding of EHEC pathogenicity is essential. The genetic manipulation of EHEC with classical one-step methods, such as the transient overexpression of the phage lambda (λ) Red functions, is not very efficient. Here, we provide a robust and reliable method for increasing recombineering efficiency in EHEC based on the transient coexpression of recX together with gam, beta, and exo. We demonstrate that the genetic manipulation is 3-4 times more efficient in EHEC O157:H7 EDL933 Δstx1/2 with our method when compared to the overexpression of the λ Red functions alone. Both recombineering systems demonstrated similar efficiencies in Escherichia coli K-12 MG1655. Coexpression of recX did not enhance the Gam-mediated inhibition of sparfloxacin-mediated SOS response. Therefore, the additional inhibition of the RecFOR pathway rather than a stronger inhibition of the RecBCD pathway of SOS response induction might have resulted in the increased recombineering efficiency by indirectly blocking phage induction. Even though additional experiments are required to unravel the precise mechanistic details of the improved recombineering efficiency, we recommend the use of our method for the robust genetic manipulation of EHEC and other prophage-carrying E. coli isolates.

2.
Pathogens ; 10(4)2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805526

RESUMO

Shiga toxins (Stx) of Shiga toxin-producing Escherichia coli (STEC) are generally encoded in the genome of lambdoid bacteriophages, which spend the most time of their life cycle integrated as prophages in specific sites of the bacterial chromosome. Upon spontaneous induction or induction by chemical or physical stimuli, the stx genes are co-transcribed together with the late phase genes of the prophages. After being assembled in the cytoplasm, and after host cell lysis, mature bacteriophage particles are released into the environment, together with Stx. As members of the group of lambdoid phages, Stx phages share many genetic features with the archetypical temperate phage Lambda, but are heterogeneous in their DNA sequences due to frequent recombination events. In addition to Stx phages, the genome of pathogenic STEC bacteria may contain numerous prophages, which are either cryptic or functional. These prophages may carry foreign genes, some of them related to virulence, besides those necessary for the phage life cycle. Since the production of one or more Stx is considered the major pathogenicity factor of STEC, we aim to highlight the new insights on the contribution of Stx phages and other STEC phages to pathogenicity.

3.
BMC Genomics ; 20(1): 504, 2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31208335

RESUMO

BACKGROUND: Enterohemorrhagic Escherichia coli (E. coli) are intestinal pathogenic bacteria that cause life-threatening disease in humans. Their cardinal virulence factor is Shiga toxin (Stx), which is encoded on lambdoid phages integrated in the chromosome. Stx phages can infect and lysogenize susceptible bacteria, thus either increasing the virulence of already pathogenic bacterial hosts or transforming commensal strains into potential pathogens. There is increasing evidence that Stx phage-encoded factors adaptively regulate bacterial host gene expression. Here, we investigated the effects of Stx phage carriage in E. coli K-12 strain MG1655. We compared the transcriptome and phenotype of naive MG1655 and two lysogens carrying closely related Stx2a phages: ϕO104 from the exceptionally pathogenic 2011 E. coli O104:H4 outbreak strain and ϕPA8 from an E. coli O157:H7 isolate. RESULTS: Analysis of quantitative RNA sequencing results showed that, in comparison to naive MG1655, genes involved in mixed acid fermentation were upregulated, while genes encoding NADH dehydrogenase I, TCA cycle enzymes and proteins involved in the transport and assimilation of carbon sources were downregulated in MG1655::ϕO104 and MG1655::ϕPA8. The majority of the changes in gene expression were found associated with the corresponding phenotypes. Notably, the Stx2a phage lysogens displayed moderate to severe growth defects in minimal medium supplemented with single carbon sources, e.g. galactose, ribose, L-lactate. In addition, in phenotype microarray assays, the Stx2a phage lysogens were characterized by a significant decrease in the cell respiration with gluconeogenic substrates such as amino acids, nucleosides, carboxylic and dicarboxylic acids. In contrast, MG1655::ϕO104 and MG1655::ϕPA8 displayed enhanced respiration with several sugar components of the intestinal mucus, e.g. arabinose, fucose, N-acetyl-D-glucosamine. We also found that prophage-encoded factors distinct from CI and Cro were responsible for the carbon utilization phenotypes of the Stx2a phage lysogens. CONCLUSIONS: Our study reveals a profound impact of the Stx phage carriage on E. coli carbon source utilization. The Stx2a prophage appears to reprogram the carbon metabolism of its bacterial host by turning down aerobic metabolism in favour of mixed acid fermentation.


Assuntos
Carbono/metabolismo , Escherichia coli O157/genética , Escherichia coli O157/metabolismo , Regulação Bacteriana da Expressão Gênica , Prófagos/fisiologia , Toxina Shiga/metabolismo , Escherichia coli O157/crescimento & desenvolvimento , Escherichia coli O157/virologia , Perfilação da Expressão Gênica , Fenótipo , Prófagos/metabolismo
4.
Int J Med Microbiol ; 308(7): 912-920, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29941383

RESUMO

Escherichia coli O104:H4 (E. coli O104:H4), which caused in 2011 a massive foodborne outbreak in Germany, is characterized by an unusual combination of virulence traits. E. coli O104:H4 contains a prophage-encoded Shiga toxin (Stx) gene, which is the cardinal virulence factor of enterohemorrhagic E. coli (EHEC). However, the outbreak strain shares highest DNA sequence similarity with enteroaggregative E. coli (EAEC) and displays the EAEC-characteristic tight adherence to epithelial cells. The virulence potential of the underlying EAEC background has not been investigated and it is therefore not clear whether E. coli O104:H4 displays distinct virulence characteristics in comparison to prototypical EAEC. In this study, we performed a detailed comparative phenotypic characterization of the Stx phage-cured E. coli O104:H4 strain C227-11φcu, the closely related EAEC strain 55989 and two other well-characterized EAEC strains 042 and 17-2 with focus on virulence traits. C227-11φcu displayed superior aggregative adherence phenotype to cultured HCT-8 epithelial cells, adhering with 3-6 times more bacteria per epithelial cells than the tested EAEC strains. Otherwise, C227-11φcu showed similar virulence characteristics to its closest relative 55989, i.e. strong acid resistance, good biofilm formation and cytotoxic culture supernatants. Furthermore, C227-11φcu was characterized by significantly weaker motility and pro-inflammatory properties than 55989 and 042, nevertheless stronger than 17-2. Taken together, C227-11φcu displayed mostly robust, but not outstanding virulence characteristics in comparison to the tested EAEC. Therefore, it appears likely that the combination of Stx production and EAEC characteristics in general, rather than an exceptionally potent EAEC background resulted in the unusual virulence of the E. coli O104:H4. Thus, the emergence of such hypervirulent strains in the future might be more likely than previously anticipated.


Assuntos
Bacteriófagos/genética , Infecções por Escherichia coli/epidemiologia , Escherichia coli O104/genética , Escherichia coli O104/patogenicidade , Doenças Transmitidas por Alimentos/epidemiologia , Toxina Shiga/genética , Aderência Bacteriana/genética , Biofilmes , DNA Bacteriano/genética , Surtos de Doenças , Infecções por Escherichia coli/microbiologia , Escherichia coli O104/isolamento & purificação , Doenças Transmitidas por Alimentos/microbiologia , Alemanha/epidemiologia , Humanos , Virulência/genética , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...