Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 160, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351328

RESUMO

Coral bleaching is a well-documented and increasingly widespread phenomenon in reefs across the globe, yet there has been relatively little research on the implications for reef water column microbiology and biogeochemistry. A mesocosm heating experiment and bottle incubation compared how unbleached and bleached corals alter dissolved organic matter (DOM) exudation in response to thermal stress and subsequent effects on microbial growth and community structure in the water column. Thermal stress of healthy corals tripled DOM flux relative to ambient corals. DOM exudates from stressed corals (heated and/or previously bleached) were compositionally distinct from healthy corals and significantly increased growth of bacterioplankton, enriching copiotrophs and putative pathogens. Together these results demonstrate how the impacts of both short-term thermal stress and long-term bleaching may extend into the water column, with altered coral DOM exudation driving microbial feedbacks that influence how coral reefs respond to and recover from mass bleaching events.


Assuntos
Antozoários , Animais , Antozoários/fisiologia , Recifes de Corais , Temperatura Alta , Água
2.
Proc Biol Sci ; 290(2009): 20231476, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37848062

RESUMO

Reef-building crustose coralline algae (CCA) are known to facilitate the settlement and metamorphosis of scleractinian coral larvae. In recent decades, CCA coverage has fallen globally and degrading environmental conditions continue to reduce coral survivorship, spurring new restoration interventions to rebuild coral reef health. In this study, naturally produced chemical compounds (metabolites) were collected from two pantropical CCA genera to isolate and classify those that induce coral settlement. In experiments using four ecologically important Caribbean coral species, we demonstrate the applicability of extracted, CCA-derived metabolites to improve larval settlement success in coral breeding and restoration efforts. Tissue-associated CCA metabolites induced settlement of one coral species, Orbicella faveolata, while metabolites exuded by CCA (exometabolites) induced settlement of three species: Acropora palmata, Colpophyllia natans and Orbicella faveolata. In a follow-up experiment, CCA exometabolites fractionated and preserved using two different extraction resins induced the same level of larval settlement as the unfractionated positive control exometabolites. The fractionated CCA exometabolite pools were characterized using liquid chromatography tandem mass spectrometry, yielding 145 distinct molecular subnetworks that were statistically defined as CCA-derived and could be classified into 10 broad chemical classes. Identifying these compounds can reveal their natural prevalence in coral reef habitats and facilitate the development of new applications to enhance larval settlement and the survival of coral juveniles.


Assuntos
Antozoários , Animais , Larva , Sinais (Psicologia) , Recifes de Corais , Ecossistema
3.
BMC Biol ; 21(1): 77, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37038111

RESUMO

BACKGROUND: Predation pressure and herbivory exert cascading effects on coral reef health and stability. However, the extent of these cascading effects can vary considerably across space and time. This variability is likely a result of the complex interactions between coral reefs' biotic and abiotic dimensions. A major biological component that has been poorly integrated into the reefs' trophic studies is the microbial community, despite its role in coral death and bleaching susceptibility. Viruses that infect bacteria can control microbial densities and may positively affect coral health by controlling microbialization. We hypothesize that viral predation of bacteria has analogous effects to the top-down pressure of macroorganisms on the trophic structure and reef health. RESULTS: Here, we investigated the relationships between live coral cover and viruses, bacteria, benthic algae, fish biomass, and water chemistry in 110 reefs spanning inhabited and uninhabited islands and atolls across the Pacific Ocean. Statistical learning showed that the abundance of turf algae, viruses, and bacteria, in that order, were the variables best predicting the variance in coral cover. While fish biomass was not a strong predictor of coral cover, the relationship between fish and corals became apparent when analyzed in the context of viral predation: high coral cover (> 50%) occurred on reefs with a combination of high predator fish biomass (sum of sharks and piscivores > 200 g m-2) and high virus-to-bacteria ratios (> 10), an indicator of viral predation pressure. However, these relationships were non-linear, with reefs at the higher and lower ends of the coral cover continuum displaying a narrow combination of abiotic and biotic variables, while reefs at intermediate coral cover showed a wider range of parameter combinations. CONCLUSIONS: The results presented here support the hypothesis that viral predation of bacteria is associated with high coral cover and, thus, coral health and stability. We propose that combined predation pressures from fishes and viruses control energy fluxes, inhibiting the detrimental accumulation of ecosystem energy in the microbial food web.


Assuntos
Antozoários , Bactérias , Recifes de Corais , Peixes , Cadeia Alimentar , Comportamento Predatório , Antozoários/microbiologia , Antozoários/virologia , Animais , Peixes/fisiologia , Oceano Pacífico , Biomassa , Ilhas , Bactérias/virologia , Água do Mar/química , Atividades Humanas , Estatísticas não Paramétricas
4.
J Vis Exp ; (191)2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36688558

RESUMO

Coral reefs thrive and provide maximal ecosystem services when they support a multi-level trophic structure and grow in favorable water quality conditions that include high light levels, rapid water flow, and low nutrient levels. Poor water quality and other anthropogenic stressors have caused coral mortality in recent decades, leading to trophic downgrading and the loss of biological complexity on many reefs. Solutions to reverse the causes of trophic downgrading remain elusive, in part because efforts to restore reefs are often attempted in the same diminished conditions that caused coral mortality in the first place. Coral Arks, positively buoyant, midwater structures, are designed to provide improved water quality conditions and supportive cryptic biodiversity for translocated and naturally recruited corals to assemble healthy reef mesocosms for use as long-term research platforms. Autonomous Reef Monitoring Structures (ARMS), passive settlement devices, are used to translocate the cryptic reef biodiversity to the Coral Arks, thereby providing a "boost" to natural recruitment and contributing ecological support to the coral health. We modeled and experimentally tested two designs of Arks to evaluate the drag characteristics of the structures and assess their long-term stability in the midwater based on their response to hydrodynamic forces. We then installed two designs of Arks structures at two Caribbean reef sites and measured several water quality metrics associated with the Arks environment over time. At deployment and 6 months after, the Coral Arks displayed enhanced metrics of reef function, including higher flow, light, and dissolved oxygen, higher survival of translocated corals, and reduced sedimentation and microbialization relative to nearby seafloor sites at the same depth. This method provides researchers with an adaptable, long-term platform for building reef communities where local water quality conditions can be adjusted by altering deployment parameters such as the depth and site.


Assuntos
Antozoários , Recifes de Corais , Animais , Ecossistema , Antozoários/fisiologia , Índias Ocidentais , Qualidade da Água
5.
Ann Rev Mar Sci ; 15: 431-460, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36100218

RESUMO

To thrive in nutrient-poor waters, coral reefs must retain and recycle materials efficiently. This review centers microbial processes in facilitating the persistence and stability of coral reefs, specifically the role of these processes in transforming and recycling the dissolved organic matter (DOM) that acts as an invisible currency in reef production, nutrient exchange, and organismal interactions. The defining characteristics of coral reefs, including high productivity, balanced metabolism, high biodiversity, nutrient retention, and structural complexity, are inextricably linked to microbial processing of DOM. The composition of microbes and DOM in reefs is summarized, and the spatial and temporal dynamics of biogeochemical processes carried out by microorganisms in diverse reef habitats are explored in a variety of key reef processes, including decomposition, accretion, trophictransfer, and macronutrient recycling. Finally, we examine how widespread habitat degradation of reefs is altering these important microbe-DOM interactions, creating feedbacks that reduce reef resilience to global change.


Assuntos
Recifes de Corais , Ecossistema , Matéria Orgânica Dissolvida , Biodiversidade
6.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35101918

RESUMO

Metabolites exuded by primary producers comprise a significant fraction of marine dissolved organic matter, a poorly characterized, heterogenous mixture that dictates microbial metabolism and biogeochemical cycling. We present a foundational untargeted molecular analysis of exudates released by coral reef primary producers using liquid chromatography-tandem mass spectrometry to examine compounds produced by two coral species and three types of algae (macroalgae, turfing microalgae, and crustose coralline algae [CCA]) from Mo'orea, French Polynesia. Of 10,568 distinct ion features recovered from reef and mesocosm waters, 1,667 were exuded by producers; the majority (86%) were organism specific, reflecting a clear divide between coral and algal exometabolomes. These data allowed us to examine two tenets of coral reef ecology at the molecular level. First, stoichiometric analyses show a significantly reduced nominal carbon oxidation state of algal exometabolites than coral exometabolites, illustrating one ecological mechanism by which algal phase shifts engender fundamental changes in the biogeochemistry of reef biomes. Second, coral and algal exometabolomes were differentially enriched in organic macronutrients, revealing a mechanism for reef nutrient-recycling. Coral exometabolomes were enriched in diverse sources of nitrogen and phosphorus, including tyrosine derivatives, oleoyl-taurines, and acyl carnitines. Exometabolites of CCA and turf algae were significantly enriched in nitrogen with distinct signals from polyketide macrolactams and alkaloids, respectively. Macroalgal exometabolomes were dominated by nonnitrogenous compounds, including diverse prenol lipids and steroids. This study provides molecular-level insights into biogeochemical cycling on coral reefs and illustrates how changing benthic cover on reefs influences reef water chemistry with implications for microbial metabolism.


Assuntos
Antozoários/metabolismo , Matéria Orgânica Dissolvida/análise , Alga Marinha/metabolismo , Animais , Antozoários/genética , Antozoários/crescimento & desenvolvimento , Carbono/metabolismo , Recifes de Corais , Ecossistema , Biologia Marinha/métodos , Metabolômica/métodos , Nitrogênio/metabolismo , Nutrientes , Fósforo/metabolismo , Polinésia , Água do Mar/química , Alga Marinha/genética , Alga Marinha/crescimento & desenvolvimento
7.
J Phycol ; 58(2): 183-197, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34897676

RESUMO

The marine green alga Brilliantia kiribatiensis gen. et sp. nov. is described from samples collected from the coral reefs of the Southern Line Islands, Republic of Kiribati, Pacific Ocean. Phylogenetic analysis of sequences of the large- and small-subunit rDNA and the rDNA internal transcribed spacer region revealed that Brilliantia is a member of the Boodleaceae (Cladophorales), containing the genera Apjohnia, Boodlea, Cladophoropsis, Chamaedoris, Phyllodictyon, and Struvea. Within this clade it formed a distinct lineage, sister to Struvea elegans, but more distantly related to the bona fide Struvea species (including the type S. plumosa). Brilliantia differs from the other genera by having a very simple architecture forming upright, unbranched, single-celled filaments attached to the substratum by a rhizoidal mat. Cell division occurs by segregative cell division only at the onset of reproduction. Based on current sample collection, B. kiribatiensis seems to be largely restricted to the Southern Line Islands, although it was also observed on neighboring islands, including Orona Atoll in the Phoenix Islands of Kiribati, and the Rangiroa and Takapoto Atolls in the Tuamotus of French Polynesia. This discovery highlights the likeliness that there is still much biodiversity yet to be discovered from these remote and pristine reefs of the central Pacific.


Assuntos
Clorófitas , Recifes de Corais , DNA Ribossômico , Oceano Pacífico , Filogenia
8.
Front Microbiol ; 12: 659302, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367080

RESUMO

Lipids, as one of the main building blocks of cells, can provide valuable information on microorganisms in the environment. Traditionally, gas or liquid chromatography coupled to mass spectrometry (MS) has been used to analyze environmental lipids. The resulting spectra were then processed through individual peak identification and comparison with previously published mass spectra. Here, we present an untargeted analysis of MS1 spectral data generated by ultra-high-pressure liquid chromatography coupled with high-resolution mass spectrometry of environmental microbial communities. Rather than attempting to relate each mass spectrum to a specific compound, we have treated each mass spectrum as a component, which can be clustered together with other components based on similarity in their abundance depth profiles through the water column. We present this untargeted data visualization method on lipids of suspended particles from the water column of the Black Sea, which included >14,000 components. These components form clusters that correspond with distinct microbial communities driven by the highly stratified water column. The clusters include both known and unknown compounds, predominantly lipids, demonstrating the value of this rapid approach to visualize component distributions and identify novel lipid biomarkers.

9.
PeerJ ; 9: e11213, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249480

RESUMO

Reef-building corals are ecosystem engineers that compete with other benthic organisms for space and resources. Corals harvest energy through their surface by photosynthesis and heterotrophic feeding, and they divert part of this energy to defend their outer colony perimeter against competitors. Here, we hypothesized that corals with a larger space-filling surface and smaller perimeters increase energy gain while reducing the exposure to competitors. This predicted an association between these two geometric properties of corals and the competitive outcome against other benthic organisms. To test the prediction, fifty coral colonies from the Caribbean island of Curaçao were rendered using digital 3D and 2D reconstructions. The surface areas, perimeters, box-counting dimensions (as a proxy of surface and perimeter space-filling), and other geometric properties were extracted and analyzed with respect to the percentage of the perimeter losing or winning against competitors based on the coral tissue apparent growth or damage. The increase in surface space-filling dimension was the only significant single indicator of coral winning outcomes, but the combination of surface space-filling dimension with perimeter length increased the statistical prediction of coral competition outcomes. Corals with larger surface space-filling dimensions (Ds > 2) and smaller perimeters displayed more winning outcomes, confirming the initial hypothesis. We propose that the space-filling property of coral surfaces complemented with other proxies of coral competitiveness, such as life history traits, will provide a more accurate quantitative characterization of coral competition outcomes on coral reefs. This framework also applies to other organisms or ecological systems that rely on complex surfaces to obtain energy for competition.

10.
Proc Natl Acad Sci U S A ; 117(24): 13588-13595, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32482859

RESUMO

Viruses, microbes, and host macroorganisms form ecological units called holobionts. Here, a combination of metagenomic sequencing, metabolomic profiling, and epifluorescence microscopy was used to investigate how the different components of the holobiont including bacteria, viruses, and their associated metabolites mediate ecological interactions between corals and turf algae. The data demonstrate that there was a microbial assemblage unique to the coral-turf algae interface displaying higher microbial abundances and larger microbial cells. This was consistent with previous studies showing that turf algae exudates feed interface and coral-associated microbial communities, often at the detriment of the coral. Further supporting this hypothesis, when the metabolites were assigned a nominal oxidation state of carbon (NOSC), we found that the turf algal metabolites were significantly more reduced (i.e., have higher potential energy) compared to the corals and interfaces. The algae feeding hypothesis was further supported when the ecological outcomes of interactions (e.g., whether coral was winning or losing) were considered. For example, coral holobionts losing the competition with turf algae had higher Bacteroidetes-to-Firmicutes ratios and an elevated abundance of genes involved in bacterial growth and division. These changes were similar to trends observed in the obese human gut microbiome, where overfeeding of the microbiome creates a dysbiosis detrimental to the long-term health of the metazoan host. Together these results show that there are specific biogeochemical changes at coral-turf algal interfaces that predict the competitive outcomes between holobionts and are consistent with algal exudates feeding coral-associated microbes.


Assuntos
Antozoários/metabolismo , Clorófitas/metabolismo , Animais , Antozoários/química , Antozoários/microbiologia , Antozoários/parasitologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Clorófitas/química , Recifes de Corais , Ecossistema , Metagenômica , Microbiota
11.
Nat Commun ; 10(1): 1691, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30979882

RESUMO

On coral reefs, microorganisms are essential for recycling nutrients to primary producers through the remineralization of benthic-derived organic matter. Diel investigations of reef processes are required to holistically understand the functional roles of microbial players in these ecosystems. Here we report a metagenomic analysis characterizing microbial communities in the water column overlying 16 remote forereef sites over a diel cycle. Our results show that microbial community composition is more dissimilar between day and night samples collected from the same site than between day or night samples collected across geographically distant reefs. Diel community differentiation is largely driven by the flux of Psychrobacter sp., which is two-orders of magnitude more abundant during the day. Nighttime communities are enriched with species of Roseobacter, Halomonas, and Alteromonas encoding a greater variety of pathways for carbohydrate catabolism, further illustrating temporal patterns of energetic provisioning between different marine microbes. Dynamic diel fluctuations of microbial populations could also support the efficient trophic transfer of energy posited in coral reef food webs.


Assuntos
Recifes de Corais , Microbiota , Fotoperíodo , Alteromonas , Ecossistema , Monitoramento Ambiental , Halomonas , Compostos Orgânicos/química , Oceano Pacífico , Psychrobacter , RNA Ribossômico/química , Roseobacter
12.
PLoS One ; 13(10): e0201766, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30281593

RESUMO

We have observed that marine macroalgae produce sound during photosynthesis. The resultant soundscapes correlate with benthic macroalgal cover across shallow Hawaiian coral reefs during the day, despite the presence of other biological noise. Likely ubiquitous but previously overlooked, this source of ambient biological noise in the coastal ocean is driven by local supersaturation of oxygen near the surface of macroalgal filaments, and the resultant formation and release of oxygen-containing bubbles into the water column. During release, relaxation of the bubble to a spherical shape creates a monopole sound source that 'rings' at the Minnaert frequency. Many such bubbles create a large, distributed sound source over the sea floor. Reef soundscapes contain vast quantities of biological information, making passive acoustic ecosystem evaluation a tantalizing prospect if the sources are known. Our observations introduce the possibility of a general, volumetrically integrative, noninvasive, rapid and remote technique for evaluating algal abundance and rates of primary productivity in littoral aquatic communities. Increased algal cover is one of the strongest indicators for coral reef ecosystem stress. Visually determining variations in algal abundance is a time-consuming and expensive process. This technique could therefore provide a valuable tool for ecosystem management but also for industrial monitoring of primary production, such as in algae-based biofuel synthesis.


Assuntos
Acústica , Organismos Aquáticos/fisiologia , Ecossistema , Alga Marinha/fisiologia , Biocombustíveis , Recifes de Corais , Havaí , Fotossíntese/fisiologia
13.
mSystems ; 3(2)2018.
Artigo em Inglês | MEDLINE | ID: mdl-29556542

RESUMO

Over the past 2 decades, molecular techniques have established the critical role of both free-living and host-associated microbial partnerships in the environment. Advancing research to link microbial community dynamics simultaneously to host physiology and ecosystem biogeochemistry is required to broaden our understanding of the ecological roles of environmental microbes. Studies on coral reefs are actively integrating these data streams at multiple levels, from the symbiotic habitat of the coral holobiont to microbially mediated interactions between corals and algae to the effects of these interactions on the microbial community structure, metabolism, and organic geochemistry of the reef ecosystem. Coral reefs endure multiple anthropogenic impacts, including pollution, overfishing, and global change. In this context, we must develop ecosystem microbiology with an eye to providing managers with microbial indicators of reef ecosystem processes, coral health, and resilience to both local and global stressors.

14.
PeerJ ; 5: e3423, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28649468

RESUMO

Human impacts are causing ecosystem phase shifts from coral- to algal-dominated reef systems on a global scale. As these ecosystems undergo transition, there is an increased incidence of coral-macroalgal interactions. Mounting evidence indicates that the outcome of these interaction events is, in part, governed by microbially mediated dynamics. The allocation of available energy through different trophic levels, including the microbial food web, determines the outcome of these interactions and ultimately shapes the benthic community structure. However, little is known about the underlying thermodynamic mechanisms involved in these trophic energy transfers. This study utilizes a novel combination of methods including calorimetry, flow cytometry, and optical oxygen measurements, to provide a bioenergetic analysis of coral-macroalgal interactions in a controlled aquarium setting. We demonstrate that the energetic demands of microbial communities at the coral-algal interaction interface are higher than in the communities associated with either of the macroorganisms alone. This was evident through higher microbial power output (energy use per unit time) and lower oxygen concentrations at interaction zones compared to areas distal from the interface. Increases in microbial power output and lower oxygen concentrations were significantly correlated with the ratio of heterotrophic to autotrophic microbes but not the total microbial abundance. These results suggest that coral-algal interfaces harbor higher proportions of heterotrophic microbes that are optimizing maximal power output, as opposed to yield. This yield to power shift offers a possible thermodynamic mechanism underlying the transition from coral- to algal-dominated reef ecosystems currently being observed worldwide. As changes in the power output of an ecosystem are a significant indicator of the current state of the system, this analysis provides a novel and insightful means to quantify microbial impacts on reef health.

15.
Nat Microbiol ; 2: 17064, 2017 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-28452987

RESUMO

Temperate bacterial viruses (phages) may enter a symbiosis with their host cell, forming a unit called a lysogen. Infection and viral replication are disassociated in lysogens until an induction event such as DNA damage occurs, triggering viral-mediated lysis. The lysogen-lytic viral reproduction switch is central to viral ecology, with diverse ecosystem impacts. It has been argued that lysogeny is favoured in phages at low host densities. This paradigm is based on the fraction of chemically inducible cells (FCIC) lysogeny proxy determined using DNA-damaging mitomycin C inductions. Contrary to the established paradigm, a survey of 39 inductions publications found FCIC to be highly variable and pervasively insensitive to bacterial host density at global, within-environment and within-study levels. Attempts to determine the source(s) of variability highlighted the inherent complications in using the FCIC proxy in mixed communities, including dissociation between rates of lysogeny and FCIC values. Ultimately, FCIC studies do not provide robust measures of lysogeny or consistent evidence of either positive or negative host density dependence to the lytic-lysogenic switch. Other metrics are therefore needed to understand the drivers of the lytic-lysogenic decision in viral communities and to test models of the host density-dependent viral lytic-lysogenic switch.


Assuntos
Bactérias/virologia , Bacteriófagos/fisiologia , Lisogenia , Bacteriófagos/genética , Dano ao DNA , Ecossistema , Meio Ambiente , Simbiose , Replicação Viral
16.
Proc Biol Sci ; 283(1837)2016 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-27581878

RESUMO

Immunity is mostly studied in a few model organisms, leaving the majority of immune systems on the planet unexplored. To characterize the immune systems of non-model organisms alternative approaches are required. Viruses manipulate host cell biology through the expression of proteins that modulate the immune response. We hypothesized that metagenomic sequencing of viral communities would be useful to identify both known and unknown host immune proteins. To test this hypothesis, a mock human virome was generated and compared to the human proteome using tBLASTn, resulting in 36 proteins known to be involved in immunity. This same pipeline was then applied to reef-building coral, a non-model organism that currently lacks traditional molecular tools like transgenic animals, gene-editing capabilities, and in vitro cell cultures. Viromes isolated from corals and compared with the predicted coral proteome resulted in 2503 coral proteins, including many proteins involved with pathogen sensing and apoptosis. There were also 159 coral proteins predicted to be involved with coral immunity but currently lacking any functional annotation. The pipeline described here provides a novel method to rapidly predict host immune components that can be applied to virtually any system with the potential to discover novel immune proteins.


Assuntos
Antozoários/imunologia , Metagenômica , Proteoma/imunologia , Vírus/genética , Animais , Humanos
17.
Nat Microbiol ; 1(6): 16042, 2016 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-27572833

RESUMO

Microbialization refers to the observed shift in ecosystem trophic structure towards higher microbial biomass and energy use. On coral reefs, the proximal causes of microbialization are overfishing and eutrophication, both of which facilitate enhanced growth of fleshy algae, conferring a competitive advantage over calcifying corals and coralline algae. The proposed mechanism for this competitive advantage is the DDAM positive feedback loop (dissolved organic carbon (DOC), disease, algae, microorganism), where DOC released by ungrazed fleshy algae supports copiotrophic, potentially pathogenic bacterial communities, ultimately harming corals and maintaining algal competitive dominance. Using an unprecedented data set of >400 samples from 60 coral reef sites, we show that the central DDAM predictions are consistent across three ocean basins. Reef algal cover is positively correlated with lower concentrations of DOC and higher microbial abundances. On turf and fleshy macroalgal-rich reefs, higher relative abundances of copiotrophic microbial taxa were identified. These microbial communities shift their metabolic potential for carbohydrate degradation from the more energy efficient Embden-Meyerhof-Parnas pathway on coral-dominated reefs to the less efficient Entner-Doudoroff and pentose phosphate pathways on algal-dominated reefs. This 'yield-to-power' switch by microorganism directly threatens reefs via increased hypoxia and greater CO2 release from the microbial respiration of DOC.


Assuntos
Antozoários/crescimento & desenvolvimento , Bactérias/crescimento & desenvolvimento , Biomassa , Recifes de Corais , Alga Marinha/crescimento & desenvolvimento , Alga Marinha/metabolismo , Animais , Antozoários/metabolismo , Bactérias/metabolismo , Metabolismo dos Carboidratos , Carbono/metabolismo , Ciclo do Carbono , Eutrofização , Glicólise , Via de Pentose Fosfato
18.
ISME J ; 10(11): 2557-2568, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27022995

RESUMO

The importance of microbial communities (MCs) cannot be overstated. MCs underpin the biogeochemical cycles of the earth's soil, oceans and the atmosphere, and perform ecosystem functions that impact plants, animals and humans. Yet our ability to predict and manage the function of these highly complex, dynamically changing communities is limited. Building predictive models that link MC composition to function is a key emerging challenge in microbial ecology. Here, we argue that addressing this challenge requires close coordination of experimental data collection and method development with mathematical model building. We discuss specific examples where model-experiment integration has already resulted in important insights into MC function and structure. We also highlight key research questions that still demand better integration of experiments and models. We argue that such integration is needed to achieve significant progress in our understanding of MC dynamics and function, and we make specific practical suggestions as to how this could be achieved.


Assuntos
Microbiologia do Ar , Água do Mar/microbiologia , Microbiologia do Solo , Animais , Ecossistema , Humanos , Modelos Teóricos
19.
PeerJ ; 3: e1390, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26587350

RESUMO

The natural beauty of coral reefs attracts millions of tourists worldwide resulting in substantial revenues for the adjoining economies. Although their visual appearance is a pivotal factor attracting humans to coral reefs current monitoring protocols exclusively target biogeochemical parameters, neglecting changes in their aesthetic appearance. Here we introduce a standardized computational approach to assess coral reef environments based on 109 visual features designed to evaluate the aesthetic appearance of art. The main feature groups include color intensity and diversity of the image, relative size, color, and distribution of discernable objects within the image, and texture. Specific coral reef aesthetic values combining all 109 features were calibrated against an established biogeochemical assessment (NCEAS) using machine learning algorithms. These values were generated for ∼2,100 random photographic images collected from 9 coral reef locations exposed to varying levels of anthropogenic influence across 2 ocean systems. Aesthetic values proved accurate predictors of the NCEAS scores (root mean square error < 5 for N ≥ 3) and significantly correlated to microbial abundance at each site. This shows that mathematical approaches designed to assess the aesthetic appearance of photographic images can be used as an inexpensive monitoring tool for coral reef ecosystems. It further suggests that human perception of aesthetics is not purely subjective but influenced by inherent reactions towards measurable visual cues. By quantifying aesthetic features of coral reef systems this method provides a cost efficient monitoring tool that targets one of the most important socioeconomic values of coral reefs directly tied to revenue for its local population.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...