Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 6(1): 815, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37542121

RESUMO

Small extracellular vesicles (sEV) in TNBC patients' plasma promote T cell dysfunction and tumor progression. Here we show that tumor cell-derived exosomes (TEX) carrying surface PDL-1, PD-1, Fas, FasL, TRAIL, CTLA-4 and TGF-ß1 induce apoptosis of CD8+T and CD4+T cells but spare B and NK cells. Inhibitors blocking TEX-induce receptor/ligand signals and TEX pretreatments with proteinase K or heat fail to prevent T cell apoptosis. Cytochalasin D, Dynosore or Pit Stop 2, partly inhibit TEX uptake but do not prevent T cell apoptosis. TEX entry into T cells induces cytochrome C and Smac release from mitochondria and caspase-3 and PARP cleavage in the cytosol. Expression of survival proteins is reduced in T cells undergoing apoptosis. Independently of external death receptor signaling, TEX entry into T cells induces mitochondrial stress, initiating relentless intrinsic apoptosis, which is responsible for death of activated T cells in the tumor-bearing hosts. The abundance of TEX in cancer plasma represents a danger for adoptively transferred T cells, limiting their therapeutic potential.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Caspases/metabolismo , Apoptose , Proteínas Reguladoras de Apoptose , Linfócitos T/metabolismo
2.
Mol Cancer Res ; 16(2): 243-255, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29117944

RESUMO

Emerging evidence suggests that Sigma1 (SIGMAR1, also known as sigma-1 receptor) is a unique ligand-regulated integral membrane scaffolding protein that contributes to cellular protein and lipid homeostasis. Previously, we demonstrated that some small-molecule modulators of Sigma1 alter endoplasmic reticulum (ER)-associated protein homeostasis pathways in cancer cells, including the unfolded protein response and autophagy. Programmed death-ligand 1 (PD-L1) is a type I integral membrane glycoprotein that is cotranslationally inserted into the ER and is processed and transported through the secretory pathway. Once at the surface of cancer cells, PD-L1 acts as a T-cell inhibitory checkpoint molecule and suppresses antitumor immunity. Here, we demonstrate that in Sigma1-expressing triple-negative breast and androgen-independent prostate cancer cells, PD-L1 protein levels were suppressed by RNAi knockdown of Sigma1 and by small-molecule inhibition of Sigma1. Sigma1-mediated action was confirmed by pharmacologic competition between Sigma1-selective inhibitor and activator ligands. When administered alone, the Sigma1 inhibitor decreased cell surface PD-L1 expression and suppressed functional interaction of PD-1 and PD-L1 in a coculture of T cells and cancer cells. Conversely, the Sigma1 activator increased PD-L1 cell surface expression, demonstrating the ability to positively and negatively modulate Sigma1 associated PD-L1 processing. We discovered that the Sigma1 inhibitor induced degradation of PD-L1 via autophagy, by a mechanism distinct from bulk macroautophagy or general ER stress-associated autophagy. Finally, the Sigma1 inhibitor suppressed IFNγ-induced PD-L1. Our data demonstrate that small-molecule Sigma1 modulators can be used to regulate PD-L1 in cancer cells and trigger its degradation by selective autophagy.Implications: Sigma1 modulators sequester and eliminate PD-L1 by autophagy, thus preventing functional PD-L1 expression at the cell surface. This posits Sigma1 modulators as novel therapeutic agents in PD-L1/PD-1 blockade strategies that regulate the tumor immune microenvironment.Visual Overview: http://mcr.aacrjournals.org/content/molcanres/16/2/243/F1.large.jpg Mol Cancer Res; 16(2); 243-55. ©2017 AACR.


Assuntos
Autofagia , Antígeno B7-H1/química , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores sigma/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Neoplasias de Mama Triplo Negativas/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Interferon gama/farmacologia , Masculino , Piperazinas/farmacologia , Proteólise , Receptores sigma/antagonistas & inibidores , Receptores sigma/genética , Microambiente Tumoral/efeitos dos fármacos , Receptor Sigma-1
3.
Adv Pharmacol ; 75: 1-33, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26920007

RESUMO

Pharmacological approaches to our understanding and treatment of pain have had a long history and have traditionally relied on very few drugs that either have significant side effects and abuse liability, such as the nonsteroidal anti-inflammatory drugs or the opioids, respectively, or those that have been developed for other conditions such as the tricyclic antidepressants. The pathophysiology of pain is undoubtedly complex, complicated in part by the fact that it is not a singular condition, and has a variety of etiologies and a number of associated comorbidities that make treatment interventions challenging. Moreover, there are changes in the central nervous system during the course of the development of chronic pain that, in a manner parallel to neurodegenerative disorders, likely require different pharmacological approaches in the early stages of acute pain compared to those that would be effective when pain has become chronic. This chapter reviews the current status of the field of pain research focusing on some relatively underdeveloped areas, such as pain and its associated comorbidities, and the use of transgenic animals and drug self-administration procedures in the context of analgesic assessment. This chapter also incorporates more recent developments and emerging trends in the area of epigenetics, biomarkers, and the use of induced pluripotent stem cells for pharmacological evaluation, target identification, and validation. Recent progress in the study of "organs-on-a-chip" will also be included in this overview, setting expectations for future progress that integrates these advances for deeper insights into mechanisms, novel treatments, and facilitated efforts in drug discovery.


Assuntos
Dor/tratamento farmacológico , Animais , Comorbidade , Descoberta de Drogas , Humanos , Dor/epidemiologia , Pesquisa Translacional Biomédica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...